

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 1

Cross Platform Extras

Interface

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 2

CONTENTS

1 Introduction .. 6

1.1 Scope ... 6

1.2 Document Organization .. 6

1.3 Relationship to other Specifications .. 7

1.4 Document Notation and Conventions ... 7

1.4.1 Conventions .. 8

1.4.2 General Notes ... 8

1.5 Normative References .. 8

1.6 Informative References ... 9

1.7 Best Practices for Maximum Compatibility .. 9

2 Primary Components .. 10

3 API ... 11

3.1 Overview .. 11

3.2 API Applicability .. 11

3.3 API Design Patterns ... 13

3.3.1 Zero-Argument Constructors ... 13

3.3.2 Event Notification via Registered Listeners ... 13

3.3.3 Completion of Asynchronous Services .. 13

3.3.4 Error Handling ... 14
3.3.5 Player State Behavior ... 14

3.4 Interfaces .. 14

3.5 Content Identification .. 14

3.5.1 ContentID Format ... 15

3.5.2 ContentID Consistency ... 15

4 Package Management API Group .. 16

4.1 Overview .. 16

4.1.1 Package Lifecycle ... 16

4.1.2 Properties of the Viewing Environment ... 17

4.1.3 Structure and Subgroups .. 17

4.2 Framework Interface ... 18

4.2.1 Lifecycle Subgroup ... 18

4.2.2 Connectivity Subgroup .. 19

4.2.3 Environment Subgroup ... 20

4.3 Package Interface ... 20

4.3.1 Lifecycle Subgroup ... 20

4.3.2 Connectivity Subgroup .. 24

4.3.3 Environment Subgroup ... 24

4.4 Shared Data Structures .. 25

4.4.1 Connectivity State ... 25
4.4.2 Status Descriptor .. 26

5 Content Access API Group ... 29

5.1 Content Access Codes ... 29

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 3

5.2 Framework Interface ... 30

5.2.1 Availability Subgroup .. 30

5.2.2 Access Event Subgroup .. 32

5.2.3 Download Subgroup ... 32

5.3 Package Interface ... 34

5.3.1 Access Event Subgroup .. 34

6 Account Access API Group .. 36

6.1 Framework Interface ... 36

6.1.1 Basic Subgroup .. 36

6.1.2 Account Event Subgroup .. 38
6.2 Package Interface ... 39

6.2.1 Account Event Subgroup .. 39

7 Player Interaction API Group .. 41

7.1 Overview .. 41

7.1.1 Component Model ... 41

7.1.2 Control of Media Stream ... 42

7.2 Framework Interface ... 42

7.2.1 Shared Constants ... 42

7.2.2 Lifecycle Subgroup ... 43

7.2.3 Basic Subgroup .. 44

7.2.4 Trickplay Subgroup ... 48

7.2.5 Controls Subgroup .. 52

7.2.6 Sound Subgroup ... 53

7.2.7 Track Selection Subgroup ... 55

7.2.8 Player Event Subgroup ... 55

7.2.9 Geometry Subgroup .. 58

7.3 Package Interface ... 61

7.3.1 Player Event Subgroup ... 61

8 Social Networking API Group ... 64

8.1 Overview .. 64

8.2 Framework Interface ... 64

8.2.1 Sharing Subgroup ... 64

8.2.2 Social Event Subgroup ... 66

8.3 Package Interface ... 67

8.3.1 Social Event Subgroup ... 67

9 Enhancements API Group .. 69

9.1 Overview .. 69

9.2 Framework Interface ... 69

9.2.1 Wishlists Subgroup ... 69

9.2.2 Bookmarks Subgroup ... 74

9.2.3 Package History Subgroup ... 78

Annex A. Implementation Guidance ... 81

A.1. Concept Overview .. 81

A.1.1. The Consumer’s Experience ... 81

A.1.2. Concept of Operations .. 82

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 4

A.1.3. Concept of Deployment... 83

A.2. Design Principles .. 84

A.2.1. Modular Object Oriented Design ... 84

A.2.2. Support for Variation in Player Capabilities ... 85

A.2.3. Mobile Users ... 85

A.3. Guidance for Framework Developers ... 85

A.3.1. Functional Decomposition ... 85

A.3.2. Package Management .. 86

A.4. Guidance for Package Developers ... 86

A.4.1. Mobile Users ... 86
A.4.2. Single User with Multiple Devices ... 86

A.4.3. History Data .. 87

Annex B. Adaptation to Specific Viewing Environments ... 88

B.1. HTML5 ... 88

B.1.1. All in Browser .. 88

B.1.2. Back-End Framework ... 89

B.2. Mobile Environments .. 89

B.2.1. Mobile Web-Based Frameworks ... 90

B.2.2. Native APIs ... 90

Annex C. Examples .. 92

NOTICES

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

NOTE: No effort is being made by the Motion Picture Laboratories to in any way obligate any market

participant to adhere to this specification. Whether to adopt this specification in whole or in part is left entirely

to the individual discretion of individual market participants, using their own independent business judgment.

Moreover, Motion Picture Laboratories disclaims any warranty or representation as to the suitability of this

specification for any purpose, and any liability for any damages or other harm you may incur as a result of

subscribing to this specification.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 5

REVISION HISTORY

Version Date Description

V1.0 June 2, 2015 Initial posted version

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 6

1 INTRODUCTION

This document defines an architectural framework and API that is will support the

deployment of content packages that enhance the user’s viewing experience. Instead of just

watching the movie, the user will be provided with a broad set of features that makes it a fully

immersive experience. The goal of this document is to facilitate the coordinated efforts of both

content producers and content retailers/distributors in the creation of these packages. To that end

an API is defined, along with the supporting contextual material to allow interested parties to create,

integrate, and deploy compliant components.

1.1 Scope

The API defined in this document is intended to facilitate the coordinated efforts of both

content producers and content retailers/distributors in the creation of interactive viewing

experiences. This document defines a language-neutral interface between the retailer-supplied

components (referred to as the Framework) and the content producer’s components (referred to as

the Package). Direct interactions of either a Framework or a Package with 3rd-party components,

such as operating systems, social networks, or back-end services, are outside the scope of this

document.

The anticipated initial implementations of this specification will be HTML/ECMAScript

(JavaScript). Although HTML5 is not fully available, the HTML5 features available across the most

popular browsers will likely be used. Given this focus, we provide HTML/ECMAScript examples.

As appropriate, other examples may be provided in the future.

1.2 Document Organization

This document is organized into three parts. The first part consists of introductory and

overview material:

Section 1. Introduction - background, scope and conventions

Section 2. Primary Components - identification of top-level components and actors

Section 3. API – Technical overview of the API including its design patterns and organization

Sections 4 through 9 contain the normative specification of the Cross-Platforms Extras API

organized into functional groupings. These are:

Section 4. Package Management

Section 5. Content Access

Section 6. Account Access

Section 7. Player Interaction

Section 8. Social Networking

Section 9. Enhancements

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 7

The remaining sections contain informative material intended to assist developers in understanding

and implementing the API:

Annex A. Implementation Guidance

Annex B. Adaptation to Specific Viewing Environments

Annex C. Examples

1.3 Relationship to other Specifications

This specification is designed to be compatible with specifications anticipated to be used on

conjunction with CPE. We have paid particular attention to the following

 Media Manifest – The Media Manifest provides a structure for describing content,

including additional video, galleries, and other assets and resources. The CPE proof

of concept has demonstrated that Media Manifest can be used as an integral part of

defining an interactive experience.

 Common Metadata – MovieLabs Common Metadata provides standard encodings

for many metadata objects.

 Common Ratings – Common Metadata Ratings defines standard encodings for

ratings worldwide. It also provides information on ratings systems that can be used

to construct parental control systems.

1.4 Document Notation and Conventions

As a general guideline, the key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”,

“SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this

document are to be interpreted as described in [RFC2119]. That is:

 “MUST”, “REQUIRED” or “SHALL”, mean that the definition is an absolute

requirement of the specification.

 “MUST NOT” or “SHALL NOT” means that the definition is an absolute prohibition of

the specification.

 “SHOULD” or “RECOMMENDED” mean that there may be valid reasons to ignore a

particular item, but the full implications must be understood and carefully weighed

before choosing a different course.

 “SHOULD NOT” or “NOT RECOMMENDED” mean that there may be valid reasons

when the particular behavior is acceptable, but the full implications should be

understood and the case carefully weighed before implementing any behavior

described with this label.

 “MAY” or “OPTIONAL” mean the item is truly optional, however a preferred

implementation may be specified for OPTIONAL features to improve interoperability.

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 8

Terms defined to have a specific meaning within this specification will be capitalized, e.g.

“Track”, and should be interpreted with their general meaning if not capitalized.

Normative key words are written in all caps, e.g. “SHALL”.

Normative requirements need not use the formal language above.

1.4.1 Conventions

This API specifies interfaces intended to provide functionality in several areas, including

package management, content access, media playback, and social networking. Developers may, if

they choose, implement either enhancements to the existing capabilities or additional features

outside the scope of this API. If, however, developers choose to do so, it must be done in a manner

that does not conflict with the interfaces and state behaviors specified by this API.

1.4.2 General Notes

All required elements and attributes must be included.

When enumerations are provided in the form ‘enumeration’, the quotation marks (‘’) should

not be included.

UTF-8 [RFC3629] encoding shall be used when ISO/IEC 10646 (Universal Character Set)

encoding is required.

1.5 Normative References

[CSS] Cascading Style Sheets Level 2 Revision 1, B. Bos, T. Çelik, I. Hickson, H. Lie. W3C.,

http://www.w3.org/TR/CSS2/

[ECMA-262] ECMAScript Language Specification, Edition 5.1, June 2011, http://www.ecma-

international.org/publications/files/ECMA-ST/Ecma-262.pdf

[EIDR-2.0] EIDR System Version 2.0 Data Fields Reference, Feb 6, 2014,

http://eidr.org/documents/EIDR_2.0_Data_Fields.pdf

[HTML5] A vocabulary and associated APIs for HTML and XHTML, Candidate Recommendation 04-Feb-

2014, R. Berjon, S. Faulkner, T Leithead, E. D. Navara, S Pfeifer, I Hickson,

http://www.w3.org/TR/2014/CR-html5-20140204/

[JSON] RFC-4627: The application/json Media Type for JavaScript Object Notation (JSON), July 2006, D.

Crokford, http://www.ietf.org/rfc/rfc4627.txt

[XML] Extensible Markup Language, T. Bray, J. Paoli, C. Sperberg-McQueen, E. Maler, F. Yergeau.

W3C., http://www.w3.org/TR/xml/

http://www.w3.org/TR/CSS2/
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://eidr.org/documents/EIDR_2.0_Data_Fields.pdf
http://www.w3.org/TR/2014/CR-html5-20140204/
http://www.ietf.org/rfc/rfc4627.txt
http://www.w3.org/TR/xml/

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 9

1.6 Informative References

[TR-META-XTRA] Common Extras Menu Metadata, v0.8e, March 2, 2015 http://www.movielabs.com/extras

[TR-META-MMM] Common Metadata Media Manifest, v1.4, June 12, 2015.

http://www.movielabs.com/md/manifest

[TR-META-CM] Common Metadata, TR-META-CM, v2.3c, July 1, 2015, http://www.movielabs.com/md/md

[TR-META-CR] Common Metadata Ratings, http://www.movielabs.com/md/ratings/

1.7 Best Practices for Maximum Compatibility

This API specifies interfaces intended to provide functionality in several areas, including

package management, content access, media playback, and social networking. Developers may, if

they choose, implement either enhancements to the existing capabilities or additional features

outside the scope of this API. If, however, developers choose to do so, it must be done in a manner

that does not conflict with the interfaces and state behaviors specified by this API.

http://www.movielabs.com/extras
http://www.movielabs.com/md/manifest
http://www.movielabs.com/md/md
http://www.movielabs.com/md/ratings/

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 10

2 PRIMARY COMPONENTS

The CPE is defined in terms of Content Providers who create Packages, Retailers who

create Frameworks, and Viewing Environments that execute the Package and Framework to create

an Interactive Experience for a Consumer. This is illustrated below.

More formally:

 Consumer: the individual(s) viewing the content in their home via an on-demand and

interactive platform (e.g., streaming to a tablet device).

 Content Provider: the organization that owns the content (e.g., a movie studio).

 Retailer/Distributor: the organization that is responsible for making the content available to

consumers and the collection of any associated fees (e.g., streaming services or on-line

retailers).

CPE defines APIs in terms of three conceptual components:

 Viewing Environment: consumer’s hardware platform and operating system (e.g., Android

tablet, iPhone, Windows 8 PC, etc.).

 Framework: software that allows the consumer to use their selected viewing environment to

view, and interact with, content. The framework may include components running within the

consumer’s viewing environment as well as components residing on servers or cloud-based

platforms.

 Package: set of content files and supporting control software that defines the state behavior

of the interactions. The package content files will consist of both primary content (i.e., the

movie that is the focus of the consumer’s attention) and the supporting content (e.g., behind-

the-scenes commentary, deleted scenes and interviews).

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 11

3 API

The method signatures and data structures that comprise the Cross-Platform Extras API are

defined in Sections 4 thru 9 of this document. To facilitate an understanding of the behavior and

intended usage of these specifications, an overview of the API and the underlying design principals

is first presented in this section of the documentation.

3.1 Overview

The Cross-Platform Extras API is organized into functional groups

 Package Management: addresses both management of the life-cycle of the package,

and access by the package to information regarding the Viewing Environment.

 Content Access: functions to identify and/or acquire the rights and entitlements to

access content as well as the ability to transfer (i.e., download) the content from its

current location.

 Account Access: provides a package the ability to establish the identity of the

consumer via a sign-in process and then obtain or modify information specific to the

consumer (e.g., preferences, wish lists).

 Player Interaction: deals with the actual playback of a content file or stream. Methods

are provided for obtaining a media player and then directing its operations (i.e., play,

pause, trickplay, etc.).

 Social Networking: deals with the use of social media accounts to interact with a larger

community via posts, likes, and similar mechanisms.

 Enhancements: functionality that is considered optional. The API therefore provides the

package with the ability to query the framework to determine which specific capabilities

are provided.

Each of the following sections provides details for one these API groups.

3.2 API Applicability

The following table indicates which APIs are required for implementation.

Mandatory (“M”) APIs that must be implemented by the Framework or Package as indicated.

Optional (“O”) APIs are strongly recommended for the Framework to ensure all Package

features can be used with that Framework. For the Package, optional APIs are implemented as

necessary to support features of the Package’s experience. Framework implementers may decide

bilaterally with Package implementers that certain optional APIs must be implemented.

Some APIs are not applicable (‘N/A’) to the Package and are marked accordingly.

An interface is provided in the Package Management Group to determine which API

Subgroups are implemented.

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 12

Group Subgroup Framework API Framework

Events

Package

Package

Management

Lifecycle M N/A M

Connectivity O N/A O

Environment O N/A O

Content Access Availability M M N/A

Access Event M N/A M

Download O N/A [note 1] N/A

Account Access Basic M M N/A

Account Event M N/A M

Player Interaction Lifecycle M M N/A

Basic M M N/A

Trickplay O M [note 2] N/A

Controls O M [note 2] N/A

Sound O M [note 2] N/A

Player Event M N/A M

Geometry M M N/A

Social Networking Sharing O O [note 3] N/A

Social Event M N/A M

Enhancements Wishlists O N/A N/A

Bookmarks O N/A N/A

Package History O N/A N/A

Notes:

1. Download events are signaled using the StatusDescriptor completion codes. See

Section 4.4.2

2. Frameworks must be prepared to notify a Package of these events when they are

the result of the Consumer using the Player’s internal control UI. Event support is

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 13

therefore MANDATORY even for Frameworks that do not expose this portion of the

API to the Package.

3. Frameworks that implement the Sharing subgroup must also support the related

events.

3.3 API Design Patterns

The Cross-Platform Extras API has been developed with the goal of supporting the

operational concepts discussed in Section A.1. To that end, several software design patterns have

been adopted to ensure that these goals will be met.

3.3.1 Zero-Argument Constructors

The API is based on the use of zero-argument constructors to facilitate a plug-in design

pattern. Thus, the API includes ‘setter’ methods for all required operational parameters. It also

allows for state behavior in which a receiving construct may reject a request due to having

insufficient state information to execute (i.e., initialization is incomplete).

3.3.2 Event Notification via Registered Listeners

Notification of asynchronous events is handled via notifications sent to registered listeners.

There are two situations in which this takes place: as a result of an unexpected event or upon the

completion of a previously requested task.

3.3.3 Completion of Asynchronous Services

When asynchronous tasks terminate, either successfully or not, notification of final status as

well as access to resulting data structures (e.g., a downloaded file) is handled via a notification of

the appropriate listener instance.

A service request that requires activity that is potentially ‘heavy-weight’ or subject to network

latencies should be handled asynchronously. That is, if a service implements a function that could

take a long time to return, for example, checking consumer credentials with a central server or

downloading media files, it should return promptly and perform the bulk of the processing

asynchronously.

Return codes from these services are only indications that service provider is able to attempt

to satisfy the request. A successful response means that the request parameters provide sufficient

information for an attempt to be made and that the service provider has no reason to believe that

the required infrastructure (e.g., network connectivity, storage space) is not available.

One should assume that a returned ‘SUCCESS’ from a heavy-weight method only means

that the caller provided the info necessary to validate the request and queue it up for asynchronous

handling later. It may subsequently fail. For example, the service may validate a URL is formed

correctly and return success, but later fail if that URL addresses an unreachable service.

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 14

3.3.4 Error Handling

Error handling is designed to allow a package to gracefully recover from errors. This

requires consistent and informative error returns. Error and status messages provide:

 enumeration of error, event, and status codes

 support for logging of diagnostic information

 support for display of user-friendly messages to the consumer

Components receiving an error notification are to perform any heavyweight recovery

procedures asynchronously. Error recovery should not be performed on the notification thread. so

as to isolate and protect all components and subsystems from failures in other components.

3.3.5 Player State Behavior

The choice of media player is the responsibility of the Retailer. A player and/or package will

provide UI controls allowing user to directly manage the media playback. The media player is,

therefore, defined in terms of two distinct state machines:

 lifecycle (i.e., create, terminate, and destroy)

 playback (i.e., start, pause, fast-forward, stop, etc.)

See Section 7, Player Interaction for further details.

Note that it is anticipated that in the future players will be implemented using HTML5, Media

Source Extensions and Encrypted Media Extensions.

3.4 Interfaces

The CPE interface treats the package and the framework as asynchronous state-machines.

Either entity may therefore be the initiator of a method call. The following material is grouped,

therefore, first by functional area (i.e., content access, player management, etc.) and then by which

entity is the initiator. Interfaces are, therefore, paired (e.g., a framework must provide an object

instantiating the Framework interface while a package must provide an object instantiating the

Package interface).

Any constants (e.g., status code or flags) that are passed across the interfaces will also be

defined in the appropriate subsection.

3.5 Content Identification

Content is identified by a string called contentID. It is essential that what is referred to by

contentID is agreed upon by the Framework and Package, and that contentID is sufficiently precise

that the correct content is referred to.

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 15

3.5.1 ContentID Format

ContentID can be any format as long as it is agreed up on by the Package Implementer and

the Framework Implementer.

Content ID format defined in Common Metadata [TR-META-CM], Section 2 SHALL be used.

This format is: “md:contentID:”<scheme>“:”<SSID>

<scheme> and <SSID> are defined in [TR-META-CM].

Note that this does not constrain the use of particular identifier schemes (e.g., EIDR or

UUID). Any identifier can be represented in this format.

3.5.2 ContentID Consistency

A goal of CPE is to create a single Package that runs across multiple Frameworks. If

content identifiers must be unique for each Framework, then a Package is not fully portable. To

achieve portability, it is essential that identifiers be used uniformly.

Within CPE contentID always refers to content that will be played by the Framework. The

Package implementer and Framework implementers must agree upon which ID is used.

The same ID (contentID) must be used for availability/entitlement, playback and

download.

Identifiers used SHALL be as defined by the Content Provider. That is, if a studio provides a

Retailer with a particular identifier, that identifier is used as contentID.

It is strongly recommended that EIDR identifiers be used as specified in [EIDR-2.0]. The

use of a standard identifier has substantial benefit to interoperability. A specific benefit is the ability

to accept identifiers that are not an exact match for a given encoding.

3.5.2.1 Note on Consistency (informative)

The key concept in identifiers is that the Framework (Retailer) and Package (Studio) agree.

This means gives the implementers some flexibility in using identifiers in a manner that would

otherwise be considered misuse. This is intentional because it allows parties to work with existing

identifiers rather than force them into a particular identifier model.

 In some case contentID might be very specific; and in other cases more general. It does

not matter as long as contentID can be used across APIs. For example, if the entitlement is

“Movie A, Director’s Cut” and a getAvailability() call indicates it’s available, then the

Framework can perform a createPlayer() with that same contentID and expect it to play.

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 16

4 PACKAGE MANAGEMENT API GROUP

The Package Management API Group addresses both management of the life-cycle of the

package, and access by the package to information regarding the Viewing Environment.

4.1 Overview

4.1.1 Package Lifecycle

The Package life-cycle is shown in the diagram below. Only those method calls that initiate

a state transition are shown. Note that Non-CPEP refers to the state prior to the CPE package

being invoked.

Key points to note are:

 The Framework may at any time terminate a Package.

 The condition when a consumer is watching a movie is to have a Package in the

Running state and the Framework in the Background state.

 The framework may temporarily disable a package, thereby taking back control of the UI,

then re-enable to package. This is NOT the same as pausing/resuming playback in that

the later situation does not change the UI view.

Non-CPEP Package load

Initializing

Selection by

consumer

START

Background

Success?
NO

YES

Pending
Cancelled by

consumer

Cancelling

terminate

Running

Success?
NOYES

status

CleanUp

Garbage

collection

TERMINATED

Failed

KEY:

Framework state

Package state

API call

Available

enable

terminate

disable

terminate

initialize

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 17

4.1.2 Properties of the Viewing Environment

A package will require information about the viewing environment in which it is operating.

While a Package has the option of directly accessing the viewing environment via native methods, it

may also obtain some information about the viewing environment from the Framework.

Environmental properties may be regarded as falling into one of two categories: static and

dynamic. The static properties accessible via the Framework and this API are referred to as the

Environment Descriptor. This structure contains information regarding the static properties of a

consumer’s hardware platform and operating system such as screen size, OS type and version,

supported media formats, and other characteristics not expected to change during normal

operations. Properties are specified in terms of key-value pairs (KVP).

Dynamic properties (e.g., current battery status, available storage space) are not considered

to be part of the environment’s description. Should a Package desire this type of information, or it

will need to make use of mechanisms outside the scope of this API.

4.1.3 Structure and Subgroups

The Package Management API is divided into the following subgroups.

Subgroup Summary

Lifecycle Provides life-cycle management of a package by the Framework.

Allows the Framework to notify the Package of changes in the viewing environment.

Connectivity Methods for a Package to obtain information regarding the Viewing Environment’s networking

capabilities

Environment Methods for a Package to obtain Viewing Environment information from the Framework

The following data structures are used to support the exchange of relevant information

between the Package and Framework.

Package Management Data Structures

ConnectivityState Provides information regarding the current state of network connectivity

StatusDescriptor Used to exchange status and error notifications

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 18

4.2 Framework Interface

4.2.1 Lifecycle Subgroup

Method Summary

status Signals to the framework a change in the status of the package or the results of a

requested operation.

4.2.1.1 getSupportedAPIs()

Returns to the caller the set of API subgroups that are supported by the Framework. The

supported groups are identified by codes:

Group Subgroup Code

Package Management Lifecycle GRP_PM_LC

Connectivity
GRP_PM_CONN

Environment
GRP_PM_ENV

Content Access Availability GRP_CA_AV

Access Event
GRP_CA_EVT

Download
GRP_CA_DLD

Account Access Basic GRP_AA_B

Account Event GRP_AA_EVT

Player Interaction Lifecycle
GRP_PI_LC

Basic
GRP_PI_B

Trickplay
GRP_PI_TP

Controls
GRP_PI_CTRL

Sound
GRP_PI_SND

Player Event GRP_PI_EVT

Geometry GRP_PI_GEOM

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 19

Social Networking Sharing GRP_SN_SHARE

Social Event GRP_SN_EVT

Enhancements Wishlists GRP_EN_WISH

Bookmarks GRP_EN_BKM

Package History GRP_EN_PH

Usage

getSupportedAPIs ()

Parameters: none:

Returns:

code[] : integer array of all applicable availability codes

ECMAScript Example

4.2.1.2 status()

Signals to the framework a change in the status of the package or the results of a requested

operation.

Usage

status(StatusDescriptor status)

Parameters:

status: a StatusDescriptor instance

Returns: none

ECMAScript Example

4.2.2 Connectivity Subgroup

Method Summary

getConnectivityState Requests information regarding the current network connection

4.2.2.1 getConnectivityState()

Requests information regarding the current network connection. Depending on the viewing

environment, some or all of the requested information may be unavailable.

Usage

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 20

getConnectivityState()

Parameters: none

Returns:

state: instance of the ConnectivityState data structure

ECMAScript Example

4.2.3 Environment Subgroup

Method Summary

getEnvironmentDesc Request for information regarding the static properties of a viewing environment

(i.e., screen size, OS type and version, supported media formats, etc.).

4.2.3.1 getEnvironmentDesc()

Request for information regarding the static properties of a viewing environment (i.e., screen

size, OS type and version, supported media formats, etc.). Properties are specified in terms of key-

value pairs (KVP).

Usage

getEnvironmentDesc()

Parameters: none

Returns:

Set of key-value pairs – The keys and values of these key-value pairs is not currently defined

in the specification as this API is provided for general flexibility. At some point, the

specification may include certain controlled vocabulary.

ECMAScript Example

4.3 Package Interface

These methods allow the Framework to notify the Package of changes in the viewing

environment and to manage the life-cycle of a package.

4.3.1 Lifecycle Subgroup

These methods provided for life-cycle management of a package by the Retailer’s

framework.

Method Summary

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 21

initialize Instructs the Package to initialize itself

enable Informs the Package it has control of the user interface and is now visible to the

consumer.

disable Informs the Package that control of the user interface is reverting to the

Framework and is no longer visible to the consumer

terminate Instructs the Package to immediately clean up as the Framework will be taking

back control of the user interface and will terminate the Package.

getState Requests the current state of the package.

getExperienceId Requests the Experience implemented by the package

4.3.1.1 initialize()

Instructs the package to initialize itself.

The initialize() function will be invoked by the framework when it determines that the

package is in the LOADED state. The mechanism by which this is determined will be specific to the

implementation language. Refer to Annex B for further details.

Initialization is completed when the package is in a state allowing the control of the UI to be

passed to it (i.e., it is in the Available state). The nature of the operations that are carried out

during initialization may vary from package to package and may take some time if remote resources

are required. The package is, therefore, allowed to complete the initialization process

asynchronously. The package should verify before returning that it can access the framework, that it

recognizes the context, and that it is compatible with the viewing environment. Any additional

initialization may take place asynchronously. When invoked by the Framework, the initialize()

method shall change its state to INIT and signal the state change to the framework invoking the

Framework’s Framework.status() method with a StatusDescriptor containing a code of

CC_STATE_CHANGE. The Framework will then remain in the PENDING state until the Package

signals the success or failure of the initialization process by setting its state accordingly and again

invoking the Framework’s Framework.status() method.

A Package will be provided with an instance of a container in which it is expected to

construct its user interface. The class of the container is dependent on the viewing environment.

For example, in an environment using HTML and browsers, the container may be an HTML DOM

element (e.g., a <div> node). In the case of an Android app being used as the viewing

environment, the container may be an instance of the Fragment class while for iOS apps the

UIView class would be used.

Usage:

initialize(context, framework, container)

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 22

Parameters:

context: the retailer’s context

framework: framework instance implementing the Framework interface as defined in this

document.

container: UI component in which the package will be displayed. The class of the

container is dependent on the viewing environment.

Returns:

StatusDescriptor with one of the following codes:

CC_INVALID_CONTEXT

CC_UNSUPPORTED_ENVIRONMENT

CC_OP_FAILED

CC_IN_PROGRESS

CC_COMPLETED

ECMAScript Example

4.3.1.2 enable()

Indicates to the package that it is being given control of the user interface and that it is now

visible to the consumer.

Usage

enable()

Parameters: none

Returns: none

ECMAScript Example

4.3.1.3 disable()

Indicates to the package that control of the user interface is reverting to the framework and

that it is no longer visible to the consumer. A package that has been disabled may be re-enabled at

some point in the future, hence the current state should be preserved.

When disable() is invoked, the Package should dispose of resources, save state, and

perform any other function that would leave the Package in a statue where it could later be enabled

or terminated.

Usage

disable()

Parameters: none

Returns: none

ECMAScript Example

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 23

4.3.1.4 terminate()

Signals to the Package that the Framework intends to take back control of the user interface

and permanently end the activities of the package. The package should immediately perform

shutdown and clean-up procedures. All session data that the package wishes to persist should be

immediately saved. Any remote resources should be freed up.

A Package should perform any termination-related actions asynchronously. Implementations

of the terminate() function should return immediately using the return value to indicate if further

actions will be taken asynchronously.

The amount of time that a framework allows a package to take before all resources are

garbage-collected is unspecified and entirely up to the framework implementation. Once the

terminate() signal has been given, the framework is no longer obligated to respond to any calls

from the package.

Usage

terminate()

Parameters: none

Returns:

Boolean indicating if the package has completed all required actions or intends to carry out

additional clean-up procedures.

ECMAScript Example

4.3.1.5 getState()

Requests the current state of the Package.

Typically this method is invoked by the framework after receiving a StatusDescriptor

with a code indicating a state change has taken place. A framework may, however, request the

package state at any time. For example, the framework may periodically request the package state

to verify it is still functioning and has not crashed.

Usage

getState()

Parameters: none

Returns:

PackageState::= {LOADED | INIT | AVAILABLE | RUNNING| FAILED | EXITING

| TERMINATED }

ECMAScript Example

4.3.1.6 getExperienceId()

Requests the identifier of the experience provided by the Package. This is a string value that

the framework may use as a key when storing or retrieving information relating to how a consumer

has been interacting with the package (e.g., bookmarks, preferences, last playback state).

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 24

A content provider may choose to assign a unique experienceId to each package.

Alternatively, multiple packages may be created, all of which are intended to provide the same

experience (e.g., one built around Sita Sings the Blues) but each targeted for different viewing

environments or with different layouts and background graphics. In that type of situation, use of a

common experienceID allows heterogenous packages to provide a uniform and common

experience despite package upgrades changes.

Usage

getExperienceId()

Parameters: none

Returns:

id: String

ECMAScript Example

4.3.2 Connectivity Subgroup

Method Summary

connectivityChange Signals the Package that either the state of a network connection has changed or

that the network being used has changed

4.3.2.1 connectivityChange()

Signals to the package that either the state of a network connection has changed or that the

network being used has changed.

Usage

connectivityChange(ConnectivityState state)

Parameters:

State: a ConnectivityState instance

Returns: none

ECMAScript Example

4.3.3 Environment Subgroup

Method Summary

deviceStatusChange Signals to the package that there has been a change in the status, state, or

capabilities of the device in which the package is running.

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 25

4.3.3.1 deviceStatusChange()

Signals to the Package that there has been a change in the status, state, or capabilities of

the device in which the package is running. This is a most often an occurrence on mobile devices

but the API does not preclude the use of this method by frameworks running in other viewing

environments.

Usage

deviceStatusChange()

Parameters: none

Returns:

key/value pair array

ECMAScript Example

4.4 Shared Data Structures

4.4.1 Connectivity State

This structure may be used to pass information regarding the current state of network

connectivity from the framework to the package. Connectivity is defined in terms of four properties:

 The type of network being accessed

 Current state of the connection to the network

 The reliability of the connection

 The subjective through-put of the connection

Both reliability and throughput are specified as capability levels using

NET_CAPABILITY ::= {LOW | MEDIUM | HIGH | UNKNOWN}.

These are treated by the API as relative and subjective valuations and no attempt is made to

equate them to absolute values. The other two properties are defined using the following constants:

NET_STATE ::= {CONNECTED | CONNECTING | DISCONNECTED | UNKNOWN }

NET_TYPE ::= {BLUETOOTH|WIRE|MOBILE|WIFI|WIMAX|NONE|UNKNOWN}

Connectivity state is obtained by the framework from the viewing environment by means of

the viewing environment’s native API. From the perspective of the package it is, therefore, a read-

only construct. If a device has multiple network connections, the information provided will pertain to

the connection being used to access or download content or to interface to backend services.

Field Summary

type the type of network being used to connect the viewing environment to the Internet.

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 26

4.4.1.1 type

Specifies the type of network being used to connect the framework and package to the

Internet. If the device is disconnected a value of NONE will be returned. Any form of non-RF based

connection (e.g., an IEEE 802.3 LAN) will be designated as WIRE.

NET_TYPE ::= {BLUETOOTH|WIRE|MOBILE|WIFI|WIMAX|NONE|UNKNOWN}

4.4.1.2 connectionState

Specifies the current state of the network connection being used to connect the framework

and package to the Internet.

NET_STATE ::= {CONNECTED | CONNECTING | DISCONNECTED | UNKNOWN }

4.4.1.3 reliability

Contains an assessment of the reliability of the network connection. This should be

regarded as a relative and subjective valuation. It is up to the framework implementer to determine

the methodology, metrics, and time-span that is used to perform the assessment. Any framework

that does not provide this capability should specify a valuation of UNKNOWN.

NET_CAPABILITY ::= {LOW | MEDIUM | HIGH | UNKNOWN}

4.4.1.4 throughput

Contains an assessment of the reliability of the network connection’s delivered bandwidth

for downloads. This should be regarded as a relative and subjective valuation. It is up to the

framework implementer to determine the methodology, metrics, and time-span that is used to

perform the assessment. Any framework that does not provide this capability should specify a

valuation of UNKNOWN.

NET_CAPABILITY ::= {LOW | MEDIUM | HIGH | UNKNOWN}

4.4.2 Status Descriptor

This structure is used to exchange status and error notifications. A StatusDescriptor

instance must, at a minimum, specify the following values:

level - severity of condition being reported

completionCode – indicates the final status of the activity whose status is being reported.

connectionState the current state of the network connection being used to connect the framework

and package to the Internet.

reliability an assessment of the reliability of the network connection.

throughput an assessment of the reliability of the network connection’s delivered bandwidth for

downloads.

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 27

Two optional fields are also provided that may be used to include textual descriptions and

details for inclusion in log message or for display to users.

A context object may also be included in a status descriptor. This may be used to provide

data indicating the specific nature of the operation whose status is being reported (e.g., the URL of

a file that was being downloaded).

Completion Code Description

CC_OP_CANCELLED Requested operation has been cancelled

CC_OP_COMPLETED Requested operation has completed. Results now available.

CC_OP_FAILED Requested operation has failed

CC_OP_PENDING Requested operation has not yet been initiated and is still pending

CC_OP_IN_PROGRESS Requested operation has been initiated and is proceeding

CC_STATE_CHANGE Package state has changed.

CC_INVALID_PARAM Service provider does not recognize or support a parameter value

CC_UNSUPPORTED Request or operation not supported in current environment

Severity Description

LEVEL_INFO Informative or diagnostic. No impact on capabilities or behavior.

LEVEL_WARNING Unexpected event. No observable impact on capabilities or behavior.

LEVEL_ERROR Undesired impact on capabilities or behavior.

LEVEL_FATAL Unable to continue normal activities in support of user.

Field Summary

level the severity level associated with the status being reported.

completionCode a code indicating the final status of the activity associated with the status being

reported.

message a brief summary message that is appropriate for use in logging or in a status

message displayed to a consumer

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 28

4.4.2.1 level

Specifies the severity level associated with the status being reported.

LEVEL ::= {INFO | WARNING | ERROR | FATAL}

4.4.2.2 completionCode

Contains a code indicating the final status of the activity associated with the status being

reported.

code: integer value equal to one of the CC_xxxx values

4.4.2.3 message

Contains a brief summary message that is appropriate for use in logging or in a status

message displayed to a consumer (e.g. “Network unavailable. Try again later”).

Note that as these messages are user-visible, the returned strings must be localized.

message: text String

4.4.2.4 details

Contains a text message that may provide background details that clarify the summary

message.

Note that as these messages are user-visible, the returned strings must be localized.

details: text String

4.4.2.5 context

Contains an Object that in some way provides the receiving entity with additional context as

to what the status message is in regards to. Examples might be a String with a request ID or an UI

container instance.

context: Object instance

details a text message that may provide background details that clarify the summary

message.

context an Object that in some way provides the receiving entity with additional context as

to what the status message is in regards to

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 29

5 CONTENT ACCESS API GROUP

Content Access APIs are used by a package to obtain or determine the accessibility of

specific content (i.e., media files and streams). This includes determining which content the user

has the rights to access, providing the user a means to acquire additional content (e.g., ‘Buy’ or

‘Rent’ button) and, where applicable, the means to download content. Notifications, such as

download complete, are also included.

Functionality to be implemented by the Framework is divided into the following subgroups:

Subgroup Summary

Availability Provides information about whether the user already has access to content, whether they can

obtain access to content, or whether there is a transaction in progress.

Access Event Methods for a Package to register for, and receive, event notifications.

Download Methods to control file download

A Package will only implement the Access Event subgroup.

5.1 Content Access Codes

These codes are used when inquiries are made as to the accessibility of a content item or

when an event is associated with some change in accessibility (see Sections 5.2.1 and 5.3.1.1

respectively). The entitlement codes are also used when the package attempts to acquire access to

content (see Section 5.2.1.2).

Entitlement Description

ACC_AVAIL_2BUY The content may be bought from this Retailer

ACC_AVAIL_2RENT The content may be rented from this Retailer

ACC_AVAIL_FREE The content does not require purchase or rental in order to access

ACC_AVAIL_BOUGHT The content has been bought from this Retailer

ACC_AVAIL_RENTED The content has been rented from this Retailer

ACC_AVAIL_PENDING A purchase or rental has been initiated and a change in availability is

therefore pending.

ACC_AVAIL_UNAVAIL The content is not available to the Consumer

ACC_AVAIL_UNK Availability cannot be determined at this time

ACC_CONTENT_UNK Unrecognized contentId

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 30

5.2 Framework Interface

Framework developers are required to provide an implementation of the ContentMgr

interface. This defines the methods that a package may use to determine the availability of, and

gain access to, specific content files.

Method Summary

getAvailability Checks the consumer’s access rights to the specified content from the Retailer.

acquire Opens the retailers purchase UI allowing the user to buy or rent the desired item.

addListener Adds the listener to the listener list.

removeListener Removes the listener from the listener list.

download Requests that a download be initiated of the specified content.

cancelDownload Cancel a previously requested and still incomplete download.

5.2.1 Availability Subgroup

Content availability APIs provide information about whether the user already has access to

content, whether they can obtain access to content, or whether there is a transaction in progress. If

the user does not have access, an API is provided to initiate a transaction to obtain content.

5.2.1.1 getAvailability()

Checks the consumer’s access rights to the specified content from the Retailer. This may

include identification of any restrictions that may apply. Possible restrictions might include if it must

be purchased or rented prior to playback, if there is a time limit on the availability, or if a limited

number of playbacks are allowed.

Content may be available in more than one variant (e.g., director’s cut and theatrical). A

query may, therefore, return the availability data for multiple content, each with its own unique

contentId.

The query completes asynchronously. Results will be returned asynchronously via a

callback function. The arguments passed when invoking the callback are an associative array of

one or more availability records, where the key is a contentId and the value is an array

containing all applicable codes. For example:

 The consumer has purchased movie “A”.

 The consumer rented movie “B”, and it is also available for purchase

 Movie “C” is available for rental but not purchase.

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 31

Usage

getAvailability(String contentId, function callback)

Parameters:

contentId: - the retailer’s content identifier

callback: - function to be passed the final results.

Returns:

StatusDescriptor : with completionCode

ECMAScript Example

getAvailability(_contentId, function(_contentId, _carData) {

var _carArray = _carData[_contentId];

 var available = ($.inArray(ACC_AVAIL_RENTED, _carArray) >= 0

 || $.inArray(ACC_AVAIL_BOUGHT, _carArray) >= 0 ||

 $.inArray(ACC_AVAIL_FREE, _carArray) >= 0);

 });

5.2.1.2 acquire()

Opens the retailers purchase UI allowing the user to buy or rent the desired item.

Purchasing is asynchronous, hence this method will return immediately. Upon completion any

registered listeners will be informed by the Framework of the change in content availability status.

Usage

acquire(String contentId, int request, String requestId)

Parameters:

contentId: - the retailer’s content identifier

request: - identifies whether the intent is to buy or rent. A value of ACC_AVAIL_2BUY or

ACC_AVAIL_2RENT must be specified.

requestId: - identifier to be provided with any event notification associated with this request

Returns:

StatusDescriptor instance with the requestId as the context value.

ECMAScript Example

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 32

5.2.2 Access Event Subgroup

5.2.2.1 addListener()

Adds the listener to the listener list. The listener is registered for all event notifications

associated with this interface.

Usage

addListener(AccessEventListener listener)

Parameters:

listener

Returns:

true if the listener was added successfully

ECMAScript Example

5.2.2.2 removeListener()

Removes the listener from the listener list. This removes an AccessEventListener that

was previously registered for all event notifications.

Usage

removeListener(AccessEventListener listener)

Parameters:

listener

Returns: none

ECMAScript Example

true if the listener was successfully removed

5.2.3 Download Subgroup

The download(), cancelDownload() and canDownload() methods are provided to control file

download. The download function, if available, is provided in the Framework.

The Package must first invoke canDownload() to determine if the Framework is capable of

downloading content. If the Framework is capable and the Package wishes to start a download,

download() is invoked, including the contentID of the content to be downloaded.

To cancel a download, cancelDownload() is used. It is assumed the Framework will make a

best effort to cancel the download.

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 33

We are currently considering adding the means to monitor the status of a download,

including an indication of download completion. This is TBD.

5.2.3.1 download()

Requests that a download be initiated of the specified content. Each retailer may have

differing procedures and options for downloading. For example, Retailer ‘A’ may allow the

consumer to select the location (i.e., directory) to which the content will be transferred while Retailer

‘B’ may not offer that degree of flexibility. Any consumer inputs, dialogs, or interactions subsequent

to initiation of the download request are, therefore, the responsibility of the framework’s

ContentMgr implementation.

Usage

download(String contentId, String requested)

Parameters:

contentId: - the retailer’s content identifier

requestId: - identifier to be provided with any event notification associated with this request

(optional)

Returns:

StatusDescriptor instance with the requestId as the context value

ECMAScript Example

5.2.3.2 cancelDownload()

Cancel a previously requested and still incomplete download. The operation to cancel is

indicated by the requestId which is expected to match that used in the original download request.

Recovery of any allocated resources (i.e., storage space) is the responsibility of the framework.

The status code that will be returned to the caller should be interpreted as follows:

 A successful cancellation will be indicated by a code of CODE_OP_CANCELLED

 In the event that the download operation has already completed, a code of

CODE_OP_COMPLETED is returned. This indicates that the content currently resides in

the targeted download location but can be deleted via a removeContent() request.

 If the requestId is unknown, a code of CODE_OP_INVALID_PARAMETER is returned.

Cancellation of a download does not eliminate the need to notify any listeners of the

conclusion of a download operation. The status code of CODE_OP_CANCELLED that will be returned

to the caller is in addition to the status code of CODE_OP_CANCELLED that will be provided in any

event notifications. This means that if the entity invoking the cancelDownload method is also a

listener, it should expect to receive redundant information via an eventual event notification of the

download’s cancellation.

Usage

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 34

cancelDownload(String requestId)

Parameters:

requestId: - identifier to be provided with any event notification associated with this request

Returns:

StatusDescriptor instance with the requestId as the context value

ECMAScript Example

5.2.3.3 canDownload()

Returns an indication of the Framework’s ability to download media. An inability to download

is indicated by a return value of false and may be due to one or more of the following conditions”

 capability is not provided by the Framework or has been disabled by the user

 the device is not connected to a network

 required file storage space is not available on the device

Usage

canDownload()

Parameters: none

Returns:

true if the framework is capable of downloading media to the user’s device.

ECMAScript Example

5.3 Package Interface

5.3.1 Access Event Subgroup

Components wishing to receive notification of account-related events must register as

AccessEventListeners. While it is assumed that a Package will implement the

AccessEventListener interface, this is not a requirement of the API

5.3.1.1 eventNotification()

Informs a registered listener of a change in content availability status, the completion of a

user initiated request, or both. Changes to content availability may be due to a request from the

consumer (e.g., a purchase) or may result from some event or action not initiated by the consumer

(e.g., expiration of a rental period). If the change is derived from a consumer initiated request, any

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 35

requestId provided when the acquire() method was invoked will be included in the event

notification.

Any event notification associated with a request made via the acquire() method will also

indicate the completion status of the request. In these cases the requestStatus field will be an

integer value equal to one of the StatusDescriptor CODE_OP_xxxx values (see Section 4.4.1).

Usage

eventNotification(String contentId, int[] eventCode, String

requestId, int requestStatus)

Parameters:

contentId: the retailer’s content identifier

eventCode: the set of all applicable availability codes.

requestId: identifier associated with the request that resulted in the change to availability

status (optional)

requestStatus: integer value equal to one of the CODE_OP_xxxx values (optional)

Returns: none

ECMAScript Example

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 36

6 ACCOUNT ACCESS API GROUP

Account Access allows a package to access account properties, such as screen name,

preferences and favorites as appropriate. It also provides the means to determine if the user is

signed in. If appropriate, it can be used by the package to indicate that the user needs to sign in or

sign out. The sign-in/sign-out procedures, like all other aspects of account management, are a

retailer-specific process and are therefore handled by the framework.

Functionality to be implemented by the Framework is divided into the following subgroups:

Subgroup Summary

Basic Methods to sign in or out and to access consumer preferences

Account Event Interface to receive notification of account-related events

A Package will only implement the Account Event subgroup.

6.1 Framework Interface

6.1.1 Basic Subgroup

The role of the Framework instance is primarily to provide the package with access to user

account data.

6.1.1.1 signIn()

Opens the retailer’s sign-in UI. The specifics by which the consumer establishes their

identity is up to the retailer. The sign-in process should be handled asynchronously. Thus upon the

completion of this method the returned StatusDescriptor will indicate only if the framework was

able to initiate the sign-in process. An asynchronous event notification will be sent to all registered

listeners when the sign-in process completes. One implication of this behavior is that the calling

package will not receive an event notification if the user fails to complete the sign-in process.

Method Summary

signIn Opens the retailer’s sign-in UI.

signOut Initiates the retailer’s sign-out process.

isSignedIn Indicates if consumer is currently signed in.

getAccountProperties Request for information regarding the properties of a signed-in consumer.

getPreferences Request for information regarding the user interface preferences of a signed-in

consumer.

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 37

Usage

signIn(String requestId)

Parameters:

requestId: Identifier that will be associated with any event resulting from the request

Returns:

StatusDescriptor instance

ECMAScript Example

6.1.1.2 signOut()

Initiates the retailer’s sign-out process. An asynchronous event notification

(ACCNT_SIGNED_OUT.) is associated with the sign-out process.. Since sign-out may potentially not

have involved invocation of the signOut() method, the event notification may not always have an

associated requestId.

Usage

signOut(String requestId)

Parameters

requestId: Identifier that will be associated with any event resulting from the request

Returns:

StatusDescriptor instance

6.1.1.3 isSignedIn()

Query to determine if consumer is currently signed in.

Usage

isSignedIn(function callback)

Parameters:

callback: - function to be passed the final results. This will be a Boolean set to true if

consumer is currently signed in

Returns:

StatusDescriptor instance indicating CC_OP_PENDING

ECMAScript Example

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 38

6.1.1.4 getAccountProperties ()

Request for information regarding the properties of a signed-in consumer (i.e., screen name,

age, avatar, etc.). Properties are specified as a JSON-compatible object. The available properties

are specific to each retailer. Account properties are, for a package, immutable and read-only. That

is to say, only the retailer’s framework may include or modify the account properties.

Usage

getAccountProperties()

Parameters: none

Returns:

properties –a JSON-compatible object

6.1.1.5 getPreferences()

Request for information regarding the user interface preferences of a signed-in consumer

(i.e., layout format, language, font size). Preferences are specified as a JSON-compatible object.

The preferences specified may be specific to each retailer’s framework. Unlike the

AccountProperties, the preferences are mutable.

Usage

getPreferences()

Parameters: none

Returns:

preferences –a JSON-compatible object

ECMAScript Example

6.1.2 Account Event Subgroup

6.1.2.1 addListener()

Adds the listener to the listener list. The listener is registered for all event notifications

associated with this interface.

Usage

addListener(AccountEventListener listener)

Parameters:

listener

Returns:

true if the listener was added successfully

ECMAScript Example

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 39

6.1.2.2 removeListener()

Removes the listener from the listener list. This removes an AccountEventListener that was

previously registered for all event notifications.

Usage

removeListener(AccountEventListener listener)

Parameters:

listener

Returns: none

ECMAScript Example

true if the listener was successfully removed

6.2 Package Interface

Components wishing to receive notification of account-related events must register as

AccountEventListeners. While it is assumed that a Package will implement the

AccountEventListeners interface, this is not a requirement of the API.

6.2.1 Account Event Subgroup

6.2.1.1 Account Event Codes

The following event types may be communicated to an AccountEventListeners:

Event Description

ACCNT_SIGNED_IN Indicates the user has signed in.

ACCNT_SIGNED_OUT Indicates the user has been signed out.

ACCNT_PREF_CHANGE Indicates a change to the set of user preferences.

6.2.1.2 eventNotification()

Notification of an event related to the currently active account.

The only event-type currently supported is ACCNT_SIGNED_OUT. This event is associated

with the consumer being ‘signed out’ either by user request or by software initiative (e.g., session

timed-out due to inactivity).

Usage

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 40

eventNotification(int eventCode, String requestId)

Parameters:

eventCode: integer value equal to one of the ACCNT_xxxx values.

requestId: (optional) indicates if the event was generated due to a signIn or signOut

request and, if so, which request.

Returns: none

ECMAScript Example

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 41

7 PLAYER INTERACTION API GROUP

The Player Interaction APIs provide the means to play content and to interact with the user

while playing content. The framework is responsible for providing a media player capability. The

package may use the API to manage the life-cycle of one or more players.

7.1 Overview

7.1.1 Component Model

A Package responds to a consumer’s request to play a media stream by obtaining access to

a Player. This access is obtained by means of the Framework’s Lifecycle subgroup of functions.

These allow the Package to ask the Framework to create, or dispose of, Players.

An instantiated Player will contain both a Video and an Audio subcomponent. A

MediaDescriptor element provides information regarding the content currently associated with the

Player, as well as the current state of playback. The Package may control the Player using the

functions supported by the Basic and Trickplay subgroups.

Event handling and callback notification is provided via registered listeners. A package

should, therefore, include one or more components that implement the PlayerEventListener

interface. This must be explicitly registered with the framework using the addListener()

method.

Subgroup Summary

Lifecycle Methods to create and destroy a Player instance

Basic Methods that allow minimal required direct control of media playback

Trickplay Trickplay functions such as fast forward and reverse

Controls Enable or Disable accessibility of Player’s Control UI

Sound Methods to control audio output

TrackSelection [NOTE: We are currently gathering requirements for this subgroup. This

subgroup will provide the means to select track on playback based on track

selection algorithms within the Package.]

Player Event Interface to receive notification of player-related events

Geometry Methods to control size and/or orientation of video display

All sub-groups are to be supported by all players and frameworks. A package will support

only the Player Event subgroup.

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 42

7.1.2 Control of Media Stream

A package may set the direction of play (i.e., forward or reverse) as well as the speed of

play. Playback is then controlled via a start/pause/stop sequence of interactions. The API also

allows a package to initiate a transition from the current location to new location (e.g., ‘jump back 15

seconds’).

A package may expect these basic operations to be supported by all players and

frameworks. The ability of a framework’s player to execute a requested action may, however, be

limited for several reasons:

 The action is supported but not in the player’s current state (e.g., a request to STOP a

player that is already stopped).

 The action is supported but one or more of the parameters are not supported (e.g., a

request to play in reverse at a speed not supported in that direction).

For this reason, methods invoked by the package will have a return code set by the framework that

indicates the success or failure of the framework in imitating the requested action. If the framework

was unable to initiate, the return code will indicate the reason (e.g. RESP_INVALID_STATE).

7.2 Framework Interface

The framework side of the player interface defines the life-cycle methods as well methods

that allow direct control of media playback via the software. This mode of control is an alternative to

direct control of playback by the Consumer via a player’s internal control panel, assuming it

provides one. The API allows the player’s controls to be hidden or disabled if the software wishes to

impose restrictions on the consumer’s actions (e.g., temporarily disabling fast-forward).

7.2.1 Shared Constants

7.2.1.1 Response Codes

The following may be used as return codes by methods provided by the Player interface.

Code Description

RESP_OK Indicates the player has begun streaming the media. The direction and rate of

playback is not specified.

RESP_INVALID_STATE Indicates the requested operation may not be performed in the Player's current

state.

RESP_UNSUPPORTED_CMD Indicates the requested operation is not supported by the Player.

RESP_UNSUPPORTED_OPT Indicates the requested operation is supported by the Player but a parameter value

was not.

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 43

RESP_FAILED Indicates the requested operation was attempted but not successful.

7.2.2 Lifecycle Subgroup

Method Summary

createPlayer Create a Player instance that is able to play the desired media item.

destroyPlayer Indicates to the framework that the package has no further use for the player

7.2.2.1 createPlayer()

Create a Player instance that is able to play the desired media item. The Framework will

return a Player instance if it is able to (a) identify the specified content, (b) verify that the Consumer

is entitled to view the content, and (c) provide a player that is compatible with the content’s format

and characteristics. It will then be the responsibility of the Package to configure and initialize the

player using the Controls, Sound, and Geometry subgroups.

The return value will be a StatusDescriptor. If the framework is able to provide a player

it will be returned to the caller as the context Object of the StatusDescriptor.

Usage

createPlayer(String contentId, String playerId, Boolean advanced)

Parameters:

contentId: The retailer’s content identifier

playerId: ID assigned by package to player instance

advanced: if true a player with support for the Trickplay subgroup should be returned. If the

framework does not support this capability, or if the argument is false, a basic player is

returned.

Returns:

StatusDescriptor

ECMAScript Example

7.2.2.2 destroyPlayer()

Indicates to the framework that the package has no further use for the player and that clean-

up and garbage collection may proceed.

Usage

destroyPlayer(Player playerId)

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 44

Parameters:

playerId : ID of the Player instance to be disposed of. Should match ID used when calling

createPlayer()

Returns: none

ECMAScript Example

7.2.3 Basic Subgroup

This subgroup provides the minimal and essential functions needed to control playback.

Subgroup Method Summary

Basic play Start playback using currently specified rate and direction.

togglePause Restart or pause playback depending on current state.

setPaused Restart or pause playback depending on specified flag.

isPaused Returns a Boolean flag indicating if the player is currently

paused.

stop Stops playback and resets to the media stream to its initial

state.

setPoster Set image shown prior to start of play

isVisible Query to determine if player is currently visible to user

jumpTo Change location in the media stream to the specified location.

This is an immediate shift and the user will not see intermediate

frames displayed.

getCurrentTime Returns the current playback location in seconds

supportsApiOption Returns Boolean indicating if player instance supports an

optional capability.

7.2.3.1 Events

This section has been removed. Refer to Section 7.3.1.1

7.2.3.2 play()

Start playback using currently specified rate and direction.

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 45

Usage

play()

Parameters: none

Returns:

status: integer value equal to one of the RESP_xxxx values.

ECMAScript Example

7.2.3.3 togglePause()

Restart or pause playback depending on current state. If restarting, playback will resume at

last location using currently specified rate and direction.

Usage

togglePause()

Parameters: none

Returns:

status: integer value equal to one of the RESP_xxxx values.

ECMAScript Example

7.2.3.4 setPaused()

Restart or pause playback depending on specified flag. If restarting, playback will resume at

last location using the currently specified rate and direction.

Usage

setPaused(Boolean pause)

Parameters:

pause - true if this component should be paused, false otherwise

Returns:

status: integer value equal to one of the RESP_xxxx values.

ECMAScript Example

7.2.3.5 isPaused()

Returns a Boolean flag indicating if the player is currently paused.

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 46

Usage

isPaused()

Parameters: none

Returns:

true if the player is currently paused, false otherwise

ECMAScript Example

7.2.3.6 stop()

Stops playback and resets to the media stream to its initial state.

Usage

stop()

Parameters: none

Returns:

status: integer value equal to one of the RESP_xxxx values.

ECMAScript Example

7.2.3.7 setPoster()

Set the image that will be displayed while media is loading and prior to the start of play.

Setting poster after play has begun will have indeterminate consequences in that the change may

or may not be visible at some future point.

Usage

setPoster(String imageUrl)

Parameters:

imageUrl: path to image

Returns: none

ECMAScript Example

7.2.3.8 isVisible()

Query to get the visibility status of the player. A player may be hidden from the user even

when the browser window is not (e.g., when page tab is not selected). Typically this method will

invoked by the package in response to having received a PE_VISIBILITY event from the

framework.

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 47

Usage

isVisible()

Parameters: none

Returns:

true if the player is currently visible to user, false otherwise

ECMAScript Example

7.2.3.9 jumpTo()

Change location in the media stream to the specified location. This is an immediate shift and

the user will not see intermediate frames displayed. The state of the player will be restored upon

completion of the operation (i.e., if the player was paused prior to the jump command it will still be

paused afterwards but if it was playing backwards at half normal rate it will still do so afterwards).

Usage

jumpTo(int position)

Parameters:

int position absolute position in time given in milliseconds

Returns:

status: integer value equal to one of the RESP_xxxx values.

ECMAScript Example

7.2.3.10 getCurrentTime()

Get the current position in the playback stream. The returned value will be rounded off to the

nearest second.).

Usage

getCurrentTime()

Parameters: none

Returns:

int position absolute position in time given in seconds.

ECMAScript Example

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 48

7.2.3.11 supportsApiOption()

Query to determine if a given set of optional functions is supported by the player instance.

Functionality is identified by a string argument specifying the name of one of the CPEx Player API

subgroups. Note that names are case sensitive.

Usage

supportsApiOption(String apiGroup)

Parameters:

apiGroup: String identifying an optional subgroup [Trickplay | Controls | Sound]

Returns:

true if the player supports the API sub-group, false otherwise

ECMAScript Example

7.2.4 Trickplay Subgroup

This subgroup provides access to more advanced control of the playback stream.

Subgroup Method Summary

Trickplay increaseRate Increase rate to next highest available.

 decreaseRate Reduce rate to next slower rate available.

 setRate Set the media playback rate to the value specified.

 getRate Returns the current rate of media playback.

 setReversed Set the direction of playback.

 isReversed Returns a Boolean flag indicating if the direction of playback is

currently reversed.

 setPlaybackMode Set both the direction and speed of playback.

 jump Change location in the media stream by the specified amount.

This is an immediate shift and the user will not see intermediate

frames displayed.

7.2.4.1 Events

The following event types may be communicated to a PlayerEventListener:

Event Description

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 49

PE_MODE_CHANGE Indicates a change to the rate or direction of playback.

PE_REPOSITION_START Indicates that the player has an initiated a repositioning of the point of playback in

response to a jump command.

PE_REPOSITION_END Indicates that the player has an completed or terminated a repositioning of the point

of playback in response to a jump command.

7.2.4.2 Trickplay Constants

7.2.4.2.1 Playback Rates

The following may be used to indicate the rate of media playback. Playback rate is specified

independently of the direction of playback (i.e., forward or reverse). A specific player may or may

not support a given rate or may only support that rate when used in one direction (e.g., a player

allows for half-speed playback in the forward direction only).

Code Description

RATE_QUARTER ¼ of normal speed

RATE_HALF ½ of normal speed

RATE_NORMAL normal speed (default); the FPS equivalent is media-dependant.

RATE_DOUBLE 2x the normal speed

RATE_TRIPLE 3x the normal speed

RATE_SLOWEST Slowest rate supported by the player

RATE_FASTEST Fastest rate supported by the player

7.2.4.3 increaseRate()

Increase rate to next highest available. The return code will indicate the new rate. If the rate

is already at the highest available setting it will remain so and the return code will be

RATE_FASTEST. The availability of a specific rate may be dependant on the capabilities of a player

as well as the current direction of playback.

Usage

increaseRate()

Parameters: none

Returns:

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 50

rate: integer value equal to one of the RATE_xxxx values.

ECMAScript Example

7.2.4.4 decreaseRate()

Reduce rate to next slower rate available. The return code will indicate the new rate. If the

rate is already at the slowest available setting it will remain so and the return code will be

RATE_SLOWEST. The availability of a specific rate may be dependant on the capabilities of a player

as well as the current direction of playback.

Usage

decreaseRate()

Parameters: none

Returns:

rate: integer value equal to one of the RATE_xxxx values.

ECMAScript Example

7.2.4.5 setRate()

Set the media playback rate to the value specified. The availability of a specific rate may be

dependent on the capabilities of a player as well as the current direction of playback.

Usage

setRate()

Parameters:

rate: integer value equal to one of the RATE_xxxx values

Returns:

status: integer value equal to one of the RESP_xxxx values.

ECMAScript Example

7.2.4.6 getRate()

Returns the current rate of media playback.

Usage

getRate()

Parameters: none

Returns:

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 51

rate: integer value equal to one of the RATE_xxxx values.

ECMAScript Example

7.2.4.7 setReversed()

Set the direction of playback. If flag==TRUE then playback is reversed.

Usage

setReversed(Boolean reverse)

Parameters:

reverse - true if the direction of playback should be reversed, false otherwise

Returns:

status: integer value equal to one of the RESP_xxxx values.

ECMAScript Example

7.2.4.8 isReversed ()

Returns a Boolean flag indicating if the direction of playback is currently reversed. The

direction of playback is treated as a state variable that is independent of whether or not the player is

currently playing a media stream. For example, a player that is currently paused will still have a

reversed state of true or false. In these situations the return value indicates the direction of

playback that will be used when the player resumes operations.

Usage

isReversed()

Parameters: none

Returns:

true if the player is currently set to playback media in reverse, false otherwise.

ECMAScript Example

7.2.4.9 setPlaybackMode()

Set both the direction and speed of playback. The availability of a specific rate may be

dependant on the capabilities of a player as well as the direction of playback. The player will

validate a requested rate based on requested direction of playback, rather than the current direction

of playback. If the combination is not supported the return code will be RESP_UNSUPPORTED_OPT

and no change will take place.

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 52

Usage

setPlaybackMode(Boolean reversed, int rate)

Parameters:

reversed: if true indicates playback direction is reversed.

rate: integer value equal to one of the RATE_xxxx values.

Returns:

status: integer value equal to one of the RESP_xxxx values.

ECMAScript Example

7.2.4.10 jump()

Change location in the media stream by the specified amount. This is an immediate shift

and the user will not see intermediate frames displayed. The state of the player will be restored

upon completion of the operation (i.e., if the player was paused prior to the jump command it will

still be paused afterwards but if it was playing backwards at half normal rate it will still do so

afterwards).

Usage

jump(int offset)

Parameters:

int offset from current position specified as time given in milliseconds.

Returns:

status: integer value equal to one of the RESP_xxxx values.

ECMAScript Example

7.2.5 Controls Subgroup

This subgroup allows a package to enable or disable the consumer’s access to any control

UI that is intrinsic to a player.

Subgroup Method Summary

Controls setVisibleControls Set the visibility of any controls internal to the Player.

hasVisibleControls Returns a Boolean flag indicating if Player has internal controls

currently visible to the user.

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 53

7.2.5.1 Events

Event Description

PE_CTRLBAR_HIDDEN Indicates the player's internal control bar has been hidden

PE_CTRLBAR_VISIBLE Indicates the player's internal control bar has been made visible to the user

7.2.5.2 setVisibleControls()

Set the visibility of any controls internal to the Player. If show==TRUE then controls are to be

displayed. This operation may fail with a return code of RESP_UNSUPPORTED_CMD if the player

does not provide internal controls or if the visibility of the controls has been locked.

Usage

setVisibleControls(Boolean show)

Parameters:

show - true if controls are to be displayed, false otherwise

Returns:

status: integer value equal to one of the RESP_xxxx values.

ECMAScript Example

7.2.5.3 hasVisibleControls()

Returns a Boolean flag indicating if Player has internal controls currently visible to the user.

If a player lacks such controls, the return value shall be FALSE.

Usage

hasVisibleControls()

Parameters: none

Returns:

true if the player is currently displaying internal controls, false otherwise

ECMAScript Example

7.2.6 Sound Subgroup

This subgroup allows the Package to read and adjust Player volume and muting.

Subgroup Method Summary

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 54

Sound setVolume Set the audio volume, from 0.0 (silent) to 1.0 (loudest).

getVolume Returns the current volume.

setMuted Mute or unmute the audio.

isMuted Returns a Boolean flag indicating if the audio is currently muted.

7.2.6.1 Events

The following event types may be communicated to a PlayerEventListener:

Event Description

PE_MUTE_CHANGE Indicates a switch into, or out of, the MUTED AUDIO state.

7.2.6.2 setVolume(float volume)

Set the audio volume.

Usage

setVolume()

Parameters:

volume: floating point value from 0.0 (silent) to 1.0 (loudest).

Returns:

volume: value equal to audio volume at conclusion of function call.

ECMAScript Example

7.2.6.3 getVolume()

Get the audio volume setting as a floating point value from 0.0 (silent) to 1.0 (loudest). Note

that the value returned is of the volume setting and that muting is considered an independent

property. This means that a non-zero volume setting does not mean the user will actually be able to

hear any audio output as the audio may be currently muted.

Usage

getVolume()

Parameters: none

Returns:

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 55

volume: floating point value from 0.0 (silent) to 1.0 (loudest).

ECMAScript Example

7.2.6.4 isMuted()

Returns a Boolean flag indicating if the audio output is currently muted.

Usage

isMuted()

Parameters: none

Returns:

true if the audio output is currently muted, false otherwise.

ECMAScript Example

7.2.6.5 setMuted()

Mute or unmute audio output. Muting is considered to be independent of the volume

property. This means that specifying muted as FALSE does not mean the user will actually be able

to hear any audio output as the audio volume currently may be set to 0.0.

Usage

setMuted(Boolean muted)

Parameters:

Mute - true if the audio is to be muted, false otherwise.

Returns:

status: integer value equal to one of the RESP_xxxx value

ECMAScript Example

7.2.7 Track Selection Subgroup

This section is TBD.

7.2.8 Player Event Subgroup

Subgroup Method Summary

addListener Add a PlayerEventListener to the listener list.

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 56

Player Event removeListener Remove the listener from the listener list.

requestNotificationAt Requests notification event when a specified

location in the playback stream is reached.

cancelNotificationAt Cancels previously requested notification event

for a specified location in the playback stream.

requestPeriodic Requests notification whenever there is a change

in the current playback position by some fixed

period of time.

cancelPeriodic Cancels notification at fixed intervals

eventNotification Notification of an event related to a player.

7.2.8.1 addListener()

Add the listener to the listener list. The listener is registered for all event notifications.

Usage

addListener(PlayerEventListener listener)

Parameters:

listener

Returns:

true if the listener was added successfully, false otherwise

ECMAScript Example

7.2.8.2 removeListener()

Remove the listener from the listener list. This removes a PlayerEventListener that

was registered for all event notifications.

Usage

removeListener(PlayerEventListener listener)

Parameters:

listener

Returns:

true if the listener was removed successfully, false otherwise

ECMAScript Example

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 57

7.2.8.3 requestNotificationAt()

Request that any Listeners be notified when playback of the media stream reaches the

specified location. The request will remain until cancelled. As a result, if the media is rewound and

played thru the specified position again, an additional notification should be delivered.

Usage

requestNotificationAt(int position)

Parameters:

int position absolute position in time given in seconds

Returns:

status: integer value equal to one of the RESP_xxxx values

ECMAScript Example

7.2.8.4 cancelNotificationAt()

Cancel request to be notified when playback of the media stream reaches the specified

location. If there is no currently pending registration for that location, the request will be ignored.

Usage

cancelNotificationAt(int position)

Parameters:

int position absolute position in time given in seconds

Returns:

status: integer value equal to one of the RESP_xxxx values

ECMAScript Example

7.2.8.5 requestPeriodic()

Request that any Listeners be notified when playback of the media stream has changed by

a fixed interval. Notification takes the form of a PE_TIME_EVENT_P event. The reporting interval

will be up to the framework and will be returned to the caller. The request will remain until cancelled.

Usage

requestPeriodic()

Parameters: none

Returns:

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 58

period: integer value of reporting interval in milliseconds.

ECMAScript Example

7.2.8.6 cancelPeriodic()

Cancel request to be notified at fixed intervals. If periodic notification is currently off, the

request will be ignored.

Usage

cancelPeriodic()

Parameters: none

Returns: none

ECMAScript Example

7.2.9 Geometry Subgroup

Subgroup Method Summary

Geometry setFullscreen Set or unset fullscreen mode.

isFullscreen Returns a Boolean flag indicating if the player is currently in

fullscreen mode.

setPlayerDimensions Set the dimensions of the player

getPlayerGeometry Get the dimensions of the player and its embedded structures

7.2.9.1 Event s

The following event types may be communicated to a PlayerEventListener:

Event Description

PE_GEOMETRY_CHANGE Indicates a change to the player geometry.

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 59

7.2.9.2 Player Geometry

The Player Geometry data structure provides a mechanism for a Player instance to

communicate all data regarding the geometry of the video presentation area. This includes the size

and positioning of designated areas within the player.

The size properties associated with a player differentiate between the size of the player itself

and the size of the video being displayed within it. The API allows the setting of the player height

and width only. The actual height and width of the region displaying the video will be determined

based on the player’s dimensions, the space used by any visible controls, and the aspect ratio of

the video being displayed. The positioning of the video within the player is indicated by an anchor

point. This is specified as a pixel offset from the upper-left corner of the player to the upper-left

corner of the video region. Most players will normally attempt to center the video as well as

maximize its size while still maintaining the required aspect ratio. Thus, under most circumstances

the video anchor point will align with the left side of the player. This is not, however, a requirement.

A player may also provide a “safe area” in which overlays and text may be placed on the

screen without interfering with the player’s internal controls. A safe area may, therefore, overlap the

video region. A safe area will be defined in terms of a height, width, and anchor point. The anchor

point will be the offset of the upper-left corner of the safe area from the upper-left corner of the

video region. If a safe area is not available or supported, the height and width values returned will

be zero.

All sizes and dimensions are specified in pixels and all positions are relative to the parent

container’s anchor point. The translation of the player-centric coordinates to some other frame of

reference (e.g., screen, container) is outside the scope of this API. Package developers should,

therefore, verify as part of the integration process any assumptions made in this regard (e.g., that

the Player will fill it’s parent container).

7.2.9.2.1 playerHeight

The height of the player in pixels (integer)

Video

Ht.
Player

Ht.
Safe area

anchor

Video region

anchor

Player/

container

Safe

Area Ht.
Video width

Player width

Safe Area width

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 60

7.2.9.2.2 playerWidth

 The width of the player in pixels (integer)

7.2.9.2.3 videoHeight

 The height of the video region in pixels (integer)

7.2.9.2.4 videoWidth

The width of the video region in pixels (integer)

7.2.9.2.5 videoOffsetX

The horizontal offset of the video region anchor point in pixels. This is measured from the

upper-left corner of the video region to the upper-left corner of the player. (integer)

7.2.9.2.6 videoOffsetY

The vertical offset of the video region anchor point in pixels. This is measured from the

upper-left corner of the video region to the upper-left corner of the player. (integer)

7.2.9.2.7 safeAreaHeight

The height of the safe area in pixels (integer)

7.2.9.2.8 safeAreaWidth

The width of the safe area in pixels. (integer)

7.2.9.2.9 safeAreaOffsetX

The horizontal offset of the safe area anchor point in pixels. This is measured from the

upper-left corner of the safe-area to the upper-left corner of the video region. (integer)

7.2.9.2.10 safeAreaOffsetY

The vertical offset of the safe area anchor point in pixels. This is measured from the upper-

left corner of the safe area to the upper-left corner of the video region. (integer)

7.2.9.3 setFullScreen()

Enable or disable the full-screen mode of display. The return value is an instance of the

PlayerGeometry data structure with resulting player dimensions.

Usage

setFullScreen(Boolean enable)

Parameters:

enable - true if player geometry is to expand to full-screen, false otherwise

Returns:

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 61

PlayerGeometry settings

ECMAScript Example

7.2.9.4 isFullScreen()

Returns a Boolean flag indicating if Player is currently displayed in full-screen mode.

Usage

isFullScreen()

Parameters: none

Returns:

true if the player is currently in full-screen mode, false otherwise

ECMAScript Example

7.2.9.5 [Section removed]

7.2.9.6 getPlayerGeometry()

Provide information about the current display settings in the form of an instance of the

PlayerGeometry data structure. See Section 7.2.9.2 for further details.

Usage

getPlayerGeometry()

Parameters: none

Returns:

PlayerGeometry current settings

ECMAScript Example

7.3 Package Interface

The Package Interface for Player Interactions contains a single subgroup: Player Event.

7.3.1 Player Event Subgroup

Components wishing to receive notification of player-related events must register as

PlayerEventListeners with each player that they wish to receive notifications from. While it is

assumed that a Package will implement the PlayerEventListener interface, this is not a

requirement of the API.

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 62

7.3.1.1 Player Event Codes

Each of the API subgroups implemented by a Framework will define it’s own set of event

codes. The following table identifies all possible event types that may be communicated to a

PlayerEventListener, including those generated by optional subgroups:

Event Description

PE_READY Indicates media is available to begin play-back

PE_PLAYING Indicates the player has begun streaming the media. The direction and rate of

playback is not specified.

PE_PAUSED Indicates the streaming of the media has been paused.

PE_STOPPED Indicates the streaming of the media has been paused, either due to a control

input, a fatal error, or because the end of the media file was reached.

PE_SUSPENDED All player activities have been temporarily suspended due to an event or action

external to the Framework or Package.

PE_RESUMED Player has been placed back in an active state after being suspended.

PE_ERROR Indicates an error in playback

PE_MODE_CHANGE Indicates a change to the rate or direction of playback.

PE_GEOMETRY_CHANGE Indicates a change to the player geometry.

PE_CTRLBAR_CHANGE Indicates a change to the visibility of the player's internal control bar.

PE_MUTE_CHANGE Indicates a switch into, or out of, the MUTED AUDIO state.

PE_REPOSITION_START Indicates that the player has an initiated a repositioning of the point of playback in

response to a jump command.

PE_REPOSITION_END Indicates that the player has an completed or terminated a repositioning of the point

of playback in response to a jump command.

PE_TIME_EVT_P Indicates a change in the current playback position by some fixed period of time

(e.g. 250 sec.)

PE_TIME_EVT_R Indicates the playback position has reached a specific point (e.g., 15 m 30 s)

PE_VISIBILITY Indicates change in visibility of player to user (e.g., window has been minimized)

7.3.1.2 eventNotification()

Notification of an event related to a player with which the receiving entity has registered as a

PlayerEventListener.

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 63

Usage

eventNotification(String playerID, int eventCode, int evtPosAbs)

Parameters:

playerID: Identifier of the player instance that is the source of the event

eventCode: integer value equal to one of the PE_xxxx values.

evtPosAbs: Absolute position of media stream (in milliseconds) at the time of the event.

Returns: none

ECMAScript Example

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 64

8 SOCIAL NETWORKING API GROUP

The Social Networking API Group allows a package to access social networks, such as

Twitter, Google+, Facebook, and similar types of on-line communities. The intent is to allow users to

share content and/or comments with others. This means that both the posting and receiving of

content is supported.

8.1 Overview

This API group is designed on the premise that the Framework is responsible for all

interactions with specific social networks. The operational concept is that:

 The Package indicates to the Framework a desire by the consumer to share specific

content (e.g. a text comment, an image from the video stream) but does not specify how

the content is to be shared nor what social network to use.

 The Framework is responsible for any additional interactions with the consumer that are

necessary to resolving which social network is to be used and what the nature of the

‘share’ is to be.

 The Framework is responsible for any log-in or authorizations procedures specific to the

selected social network.

 Any interactions with the social network API is handled by the Framework.

Functionality to be implemented by the Framework is divided into the following subgroups:

Subgroup Summary

Basic Methods to access and use social networks

Social Event Interface to receive notification of events relating to social networks

A Package will only implement the Account Event subgroup.

8.2 Framework Interface

8.2.1 Sharing Subgroup

Method Summary

hasSocialNetworks Returns a Boolean indicating if any social networks are available for use

share Initiate a ‘share’ operation.

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 65

8.2.1.1 Events

The following event types may be communicated to a SocialEventListeners:

Event Description

SN_EVENT_STATE_CHANGE Indicates a change in the availability of social networks.

SN_EVENT_REQ_REJCTED Request was rejected by the social network

SN_EVENT_REQ_PENDING Request has not yet been initiated and is still pending

SN_EVENT_REQ_UNSUPPORTED Request not supported in current environment

SN_EVENT_RCVD_RESP A posting has been received in response to and earlier share request

SN_EVENT_RCVD_UNSOL An posting has been received that is unsolicited (i.e., not a response)

8.2.1.2 Constants

The following may be used to indicate the type of content to be shared.

Code Description

SN_TYPE_QUARTER text

SN_TYPE_IMAGE image

SN_TYPE_VIDEO video

SN_TYPE_IM Short text

SN_TYPE_CHAT Interactive dialog

8.2.1.3 hasSocialNetworks()

Returns a boolean flag indicating if any social networks are available for use in sharing

content or postings. The exact meaning of ‘availability’ is determined by the retailer. One criterion

might be that a social network is considered available if the Framework has the ability to interact

with it at the API level. A more restrictive criterion would be that the current consumer has an

established account with the social network. The precise semantics of social network availability

should therefore be specified as part of the framework-package integration procedure.

Usage

hasSocialNetworks()

Parameters: none

Returns:

true if any social networks are available, false otherwise

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 66

ECMAScript Example

8.2.1.4 share()

Requests the initiating of a ‘share’ operation. A contextID is used to associate this request

with any resulting event notifications. The contentType parameter indicates the type of content

the user intends to share (e.g., text). This is may be used by a Framework implementation to

identify the social networks that are compatible with the user’s intentions.

An optional contentUrl is used to indicate the information that is to be shared. If not

provided, the Framework is responsible for initiating and dialogues with the consumer to obtain the

information (e.g., providing a pop-up text-input window for entering an instant message). If a

contentUrl is provided, the specifics of the encoding syntax are outside the scope of this API and

should be resolved as part of the Framework-Package integration process.

A share request will be treated as an asynchronous operation and, therefore, does not

return a value. Instead, and registered SocialEventListener instances will be notified of events

relating to the progress of the request.

Usage

share(String contextID, int contentType, String contentUrl)

Parameters:

contextID: String value used in event notifications to identify a share request

contentType: integer value equal to one of the SN_TYPE_xxxx values

contentUrl: String value used to identify the content to share (optional)

Returns: none

ECMAScript Example

8.2.2 Social Event Subgroup

8.2.2.1 addListener()

Adds the listener to the listener list. The listener is registered for all event notifications

associated with this interface.

Method Summary

addListener Add a SocialEventListener to the listener list.

removeListener Remove the listener from the listener list.

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 67

Usage

addListener(SocialEventListeners listener)

Parameters:

listener

Returns:

true if the listener was added successfully, false otherwise.

ECMAScript Example

8.2.2.2 removeListener()

Removes the listener from the listener list. This removes a SocialEventListeners that

was previously registered for all event notifications.

Usage

removeListener(SocialEventListeners listener)

Parameters:

listener

Returns:

true if the listener was successfully removed, false otherwise.

ECMAScript Example

8.3 Package Interface

Components wishing to receive notification of events related to the use of social networks

must register as SocialEventListeners. While it is assumed that a Package will implement the

SocialEventListeners interface, this is not a requirement of the API.

8.3.1 Social Event Subgroup

8.3.1.1 eventNotification()

Notification of an event related to the use of social networks. The eventCode value is

always provided. The other three parameters are considered optional or required depending on the

type of event that is being reported.

 STATE_CHANGE: The other three parameters may be ignored. The Listener may choose

to invoke the hasSocialNetworks() call to determine the current availability of social

networks.

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 68

 REQ_xxxx: The contextID will indicate the request that this event is associated with.

The remaining two parameters may be ignored.

 RCVD_RESP: The contextID will indicate a package-initiated request that this event is

associated with and contextID will indicate the type of response received. The

contentUrl is used to indicate how the received content may be accessed. The

specifics of the encoding syntax are outside the scope of this API and should be

resolved as part of the Framework-Package integration process.

 RCVD_UNSOL: The parameter interpretation is identical to that associated with the

RCVD_RESP notification with the one exception of the contextID. The contextID will

be assigned by the Framework rather than used to indicate a previous package-initiated

request.

Usage

eventNotification(int eventCode, String contextID, int contentType,

String contentUrl)

Parameters:

eventCode: integer value equal to one of the SN_EVENT_xxxx values.

contextID: String value

contentType: integer value equal to one of the SN_TYPE_xxxx values

contentUrl: String value indicating location of received content

Returns: none

ECMAScript Example

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 69

9 ENHANCEMENTS API GROUP

The Enhancements group addresses features that, while not required, provide support for

capabilities that may be used by developers to provide a richer and wider set of interactive

experiences. The functionality in this group is considered optional.

9.1 Overview

This group includes functionality that is considered optional. The API therefore provides the

package with the ability to query the framework to determine which specific capabilities are

provided.

9.2 Framework Interface

The functionality is divided into feature-specific subsets (e.g., support for bookmarks). If a

Framework developer chooses to implement an optional feature they must implement the entire

subset of functions associated with that feature. Currently the feature subsets are:

Subgroup Description

Wishlists Manage wishlists

Bookmarks Manage bookmarks

History Persistently store information about the usage of this Package.

9.2.1 Wishlists Subgroup

Wishlist management is outside the scope of this API and some retailers may support the

use of multiple wish lists. For this reason the invocation of the addToWishList method is to be

interpreted as a signal to the retailer framework to initiate whatever processes and user interactions

may be necessary to complete the action (e.g., prompting the consumer for which list the content is

to be added to).

The assumptions shall be that consumers may add content to a wish list at any time,

including during the playback of content. Thus, in the event that some form of interaction with the

consumer or a remote site is required, these actions should be handled by the framework in an

asynchronous manner. Final results of the operations will be signaled to the requester via an

ListEventListener notification.

Wishlists are associated with a specific user account. A user must, therefore, be logged in in

order for wishlist actions to be processed. It is, however, up to the framework implementer to decide

how to handle requests when the user is not currently logged in. The framework may either:

 Reject the request from the package and return a status of CC_UNSUPPORTED, or

 Initiate the login process prior to completing the requested operation.

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 70

Package implementers should, therefore, allow for either approach.

Subgroup Method Summary

Wishlist supportsWishList Determine if the wish-list capability is provided by the retailer.

addToWishList Add the specified content to a wish list maintained by the

retailer.

removeFromWishList Remove the specified content from a wish list maintained by

the retailer.

isInWishList Determine if the specified content is in a wish list maintained by

the retailer.

addListener Register a listener to receive ListEvent notifications.

removeListener Remove a previously registered listener.

9.2.1.1 supportsWishList()

Determine if the wishlist capability is provided by the retailer. Note that this is an indication of

the framework’s general ability to provide this capability. It is not an indication that is currently able

to process wishlist requests as that may be impacted by the user’s login status.

Parameters: none

Returns:

true - if the wishlist capability is provided by the retailer, false otherwise

ECMAScript Example

9.2.1.2 addToWishList()

Add the specified content to a wishlist maintained by the retailer. Wishlist management is

outside the scope of this API and some retailers may support the use of multiple wishlists. For this

reason the invocation of the addToWishList method is to be interpreted as a signal to the retailer

framework to initiate whatever processes and user interactions may be necessary to complete the

action. In the event that some form of interaction with the consumer or a remote site is required,

these actions should be handled by the framework in an asynchronous manner. The changes to

wishlist contents, if any, will be signaled to any registered listeners via a ListEvent notification.

This function will return a StatusDescriptor with a completion code of

CC_OP_INVALID_PARAM under the following conditions:

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 71

 if the specified list already contains the content identified, or

 if the ListId is invalid.

If the user is not currently logged in a Framework MAY return a status of CC_UNSUPPORTED.

Usage

addToWishList(String contentId, String listId, String requestId)

Parameters:

contentId: - the retailer’s content identifier

listId: - the wishlist identifier. If null then either the default list will be used or the

consumer will be queried.

requestId: - context value associated with any resulting asynchronous event notifications.

Returns:

StatusDescriptor instance with completion code of CC_OP_COMPLETED or

CC_OP_INVALID_PARAM

ECMAScript Example

9.2.1.3 removeFromWishList()

Remove the specified content from a wishlist maintained by the retailer. Wishlist

management is outside the scope of this API and some retailers may support the use of multiple

wishlists. For this reason the invocation of the removeFromWishList method is to be interpreted

as a signal to the retailer framework to initiate whatever processes and user interactions may be

necessary to complete the action. In the event that some form of interaction with the consumer or a

remote site is required, these actions should be handled by the framework in an asynchronous

manner.

Final results of the operations will be signaled to the requester via an ListEvent

notification. If the content is not currently present on the specified wishlist, the function will return a

status of CC_OP_COMPLETED but no event will be generated since the list was not modified. This

function will return a StatusDescriptor with a completion code of CC_OP_INVALID_PARAM if

the ListId is invalid. A framework MAY return a status of CC_UNSUPPORTED if the user is not

currently logged in

Usage

removeFromWishList(String contented, String listId, String requestId)

Parameters:

contentId: - the retailer’s content identifier

listId: - the wishlist identifier. If null then either the default list will be used or the

consumer will be queried.

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 72

requestId: - context value associated with any resulting asynchronous event notifications.

Returns:

StatusDescriptor instance

ECMAScript Example

9.2.1.4 isInWishList()

Determine if the specified content is in a wish list maintained by the retailer. Retailers may

choose to support the use of multiple wishlists. The value passed to the callback function is,

therefore, a list identifier. In the event that the content is not found on any list or if the request

cannot be processed due to the user not being logged in, a null value is returned.

Usage

isInWishList(String contentId, String requestId, Function callback)

Parameters:

contentId: - the retailer’s content identifier

requestId: returned to callback function with final result

callback: package function to receive result.

Returns:

StatusDescriptor instance

Callback

function(String requestId, String listId)

Arguments:

listId - if the content is in a wishlist, null otherwise

ECMAScript Example

9.2.1.5 addListener()

Adds the listener to the listener list. The listener is registered for all event notifications

associated with this interface.

Usage

addListener(ListEventListener listener)

Parameters:

listener

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 73

Returns:

true if the listener was added successfully

ECMAScript Example

9.2.1.6 removeListener()

Removes the listener from the listener list. This removes a ListEventListener that was

previously registered for all event notifications.

Usage

removeListener(ListEventListener listener)

Parameters:

listener

Returns:

true if the listener was successfully removed

ECMAScript Example

9.2.1.7 List Event Notifications

Additions or deletions from a wishlist will result in the generation of a ListEvent that will

be delivered to all registered listeners. Changes to the contents of a list may be due to a request

from the consumer (e.g., a purchase) or may result from some event or action not initiated by the

consumer. If the change is derived from a consumer initiated request, any requestId provided

when the request was made will be included in the event notification. The notification will also

identify which list has been changed.

Usage

eventNotification(String contentId, String listId, String requestId,

int eventCode)

Parameters:

contentId: the content identifier

listId: the wishlist identifier.

requestId: identifier associated with the request that resulted in the change to availability

status (optional)

eventCode: the applicable code [LE_ADDED | LE_DELETED]

Returns: none

ECMAScript Example

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 74

9.2.2 Bookmarks Subgroup

A ‘bookmark’ is specified as a location within a media stream. It is therefore defined by two

values: a contentId, indicating a media stream, and a position, given in milliseconds.

The actual bookmark position should be assumed to be the frame at exactly that time or

immediately following. Frame accuracy should not assumed for bookmarks. The exact position of a

bookmark depends on the encoding of the content. Changes in frame rate and time compression

can affect bookmark position. See Section 9.2.2.1 for further guidance on the implementation and

usage of bookmarks.

Subgroup Method Summary

Bookmarks supportsBookmarks Determine if the bookmark capability is provided by the retailer.

setBookmark Set a bookmark at the designated location in the media.

removeBookmark Remove any bookmarks at the designated location in the

media

getBookmark Returns the bookmark properties as a set of key/value pairs.

getAllBookmarks Returns sorted array of locations in the media for which a

bookmark exists.

9.2.2.1 Use of Timecodes

A ‘bookmark’ is specified as a location within a media stream and is defined by two values: a

contentId, indicating a media stream, and a position, also referred to as a timecode, given in

milliseconds. The actual bookmark position should be assumed to be the frame at exactly that time

or immediately following. Frame accuracy should not be assumed for bookmarks.

The exact frame that equates a bookmark’s position depends on several factors. Changes

in encoding, i.e., frame rate or time compression, can affect bookmark position in that a position

specified in terms of milliseconds will now map to a different frame. Furthermore, any change in the

specific edit (e.g., theatrical vs. director’s cut) will also affect bookmarks. Editing or encoding

changes will, however, also result in the assignment of a new contentId. The ability to define

bookmarks applicable to a set of related content (e.g., both a theatrical and director’s cut of the

same movie) would require the ability to ‘translate’ a bookmark in terms of identifying the equivalent

frame (i.e., time-based offset) in each version of the content. This type of advanced capability is

outside the scope of this API.

To avoid bookmark collisions, a timecode specified for use as a bookmark position SHALL

be assumed to have a resolution of ½ second. Any two bookmarks that are defined with the same

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 75

contentId and that have positions within ½ second of each other SHALL be treated as equivalent

and redundant. See Section 9.2.2.3.2 for additional details regarding the handling of duplicate

bookmarks.

9.2.2.2 Bookmark Properties and Structure

 This section of the API should be considered a work-in-progress and likely to change

in future releases.

A bookmark SHALL have as a minimum the following required properties:

 cid – identifies a specific media stream

 tstamp – offset from start of stream (in milliseconds)

 label – user entered string

A bookmark MAY have the following optional properties:

 description - user entered string

 created – Date and time of bookmark creation in JSON-compatible format (see

below)

 lastAccess - Date and time the bookmark was last selected by the user (JSON-

compatible format)

 selectCnt – Number of times the user has selected the bookmark

A framework implementer MAY provide additional properties provided these properties are

considered optional and the property names do not conflict with those defined by this API.

A bookmark SHALL be compatible with the JSON syntax. This means that all date-time

fields are encoded as strings using UTC times (e.g., 2015-12-05T21:01:26.938Z)

9.2.2.3 Framework Interface

9.2.2.3.1 supportsBookMarks()

Determine if the bookmark capability is provided by the retailer.

Usage

supportsBookMarks()

Parameters: none

Returns:

true - if the bookmark capability is provided by the retailer, false otherwise

ECMAScript Example

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 76

9.2.2.3.2 setBookmark()

Set a bookmark at the designated location in the media. A bookmark will be rejected if the

contentId is unrecognized or if it duplicates an already existing bookmark. Duplication is

determined by the comparison of contentId and position. See Section 9.2.2.1 for further

details.

Usage

setBookmark(String contentId, int position, String label, String

description, Function callback)

Parameters:

contentId: - the retailer’s content identifier

position absolute position in time given in milliseconds

label: identifier to display to consumer

description: optional text

callback: function to receive final result

Returns:

true - if the bookmark has been added, false otherwise

Callback

function(Object bookmark)

Arguments:

bookmark – the added bookmark formatted as a JSON-compatible object. See Section

9.2.2.2.

ECMAScript Example

9.2.2.3.3 removeBookmark()

Remove any bookmarks at the designated location in the media.

Usage

removeBookmark(String contentId, int position)

Parameters:

contentId: - the retailer’s content identifier

int position: absolute position in time given in milliseconds

Returns:

true - if a bookmark has been removed, false otherwise

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 77

ECMAScript Example

9.2.2.3.4 getAllBookmarks()

Returns an array of bookmarks, each formatted in accordance with Section 9.2.2.2.. If no

bookmarks exist int the specified content an empty array is returned.

Usage

getAllBookmarks(String contentId)

Parameters:

contentId: - the retailer’s content identifier

Returns:

Object[] array

ECMAScript Example

9.2.2.3.5 getBookmark ()

Returns a bookmark formatted in accordance with Section 9.2.2.2. If no bookmark exists at

the specified position a null value is returned.

Usage

getBookmark (String contentId, int position)

Parameters:

contentId: - the retailer’s content identifier

position: absolute position in time given in milliseconds

Returns:

Object

ECMAScript Example

9.2.2.3.6 getRelativeTo ()

Returns the bookmark closest to the specified location when transitioning in the indicated

direction. The bookmark is formatted in accordance with Section 9.2.2.2. If no bookmark exists that

satisfies the criteria a null value is returned.

Usage

getBookmark (String contentId, int position, Boolean fwdDir)

Parameters:

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 78

contentId: - the retailer’s content identifier

position: absolute position in time given in milliseconds

fwdDir: if true the returned bookmark should have a timecode greater than the that

specified by the position argument. If false the timecode must be less than that of

the position argument.

Returns:

Object

ECMAScript Example

9.2.3 Package History Subgroup

These functions provide a mechanism for a package to persist information regarding how a

specific user has made use of the package.

A package history may include user preferences specific to the package but it may also

include viewing history such as which clips have been viewed or the point in a clip at which the user

last paused and exited the package. Thus, the package history may be used to pause the

interactive experience, persist its state, and then resume the experience at a later time.

Any information that is saved persistently will be treated by the Framework as a text blob.

The content and structure are specific to the package. The formatting MUST be JSON compatible.

See Section A.4.3 for further guidance on this topic.

The location and mechanism for persisting package history is determined by the retailer. No

assumption is made by this API as to whether history data is specific to the current Viewing

Environment or if a retailer is maintaining history data on a global (i.e., cross-platform) basis.

Subgroup Method Summary

PackageHistory supportsHistory Determine if the package history capability is provided by

the retailer.

getPackageHistory Request for information regarding the previous use of the

package by the currently signed-in consumer.

savePackageHistory Persist information regarding the latest use of the package

by the current consumer.

9.2.3.1 supportsHistory()

Determine if the package history capability is provided by the retailer.

Usage

supportsHistory()

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 79

Parameters: none

Returns:

true - if the capability is provided by the retailer, false otherwise

ECMAScript Example

9.2.3.2 getPackageHistory()

Request for information regarding the previous use of the package by the currently signed-in

consumer. The history is provided in the format of a JSON-compatible object that is returned

asynchronously to the caller via a callback.

Usage

getPackageHistory(Function callback)

Parameters:

callback: function to receive final result

Returns:

StatusDescriptor instance indicating CC_OP_IN_PROGRESS, CC_OP_COMPLETED, or

CC_OP_UNSUPPORTED

Callback

function(Object history)

Arguments:

history – the package history formatted as a JSON-compatible object.

ECMAScript Example

9.2.3.3 savePackageHistory()

Request to persistently store information regarding the latest use of the package by the

current consumer.

Usage

savePackageHistory(Object history)

Parameters:

history – the package history formatted as a JSON-compatible object .

Returns:

StatusDescriptor instance

ECMAScript Example

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 80

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 81

ANNEX A. IMPLEMENTATION GUIDANCE

The contents of the section are for informative purposes only and are intended to provide

guidance to developers and to assist in their use and understanding of the normative material.

A.1. Concept Overview

The motivation and background context of the Cross-Platforms Extras project can be viewed

in terms of two viewpoints: the end-goals and the immediate goals.

The end-goal of this effort is to provide home users with enhanced interactive features that

extend beyond simply watching a movie to include support for activities such as social interactions,

access to supplementary information, and commerce. Examples of supported actions may include

accessing behind-the-scenes commentary, posting comments on social media, buying or renting a

film, or adding a film to a wish-list for later purchase.

The immediate goal of this effort is to facilitate the coordinated efforts of both content

producers and content retailers/distributors in the creation of these packages. In addressing this

goal, there is a requirement that the solution provides support for any/all retailer distributing content

from any/all content provider. To that end an API is required, along with any supporting contextual

material that assists interested parties in the creation and deploy of these capabilities.

A.1.1. The Consumer’s Experience

 The package has to operate in a reliable and user-friendly manner regardless of where

the consumer is and what type of device they are using. That means that as part of its

initialization process a package will need to determine, and adapt to, device-specific

capabilities such as the device’s screen size, and the capabilities of any available

network connection, and the availability of local storage for downloading and caching.

 More often than not, consumer will be viewing content on mobile devices. This means

that even after start-up and initialization, a package may be presented with a wide range

of events to handle.

o The screen has changed orientation and size

o The quality of the network connection has changed (e.g., lower bandwidth,

intermittent loss of connectivity, longer latencies)

o The possibility of new types of interrupt events (e.g., incoming phone call pre-

empts playback).

o A warning or forced shutdown due to low battery power

Regardless of the nature of change or preemption, the consumer expects the viewing experience to

continue uninterrupted or to resume where they left off

 Consumers may start watching a movie late at night at home on a desktop PC, pause it

part way thru, then resume watching the next morning using their smartphone while

commuting to work on the train. The retailer may be the same but the framework they

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 82

provide may be different on a mobile device than on a desktop one (e.g., different

browsers; same browser but different media players; pure HTML browser on the desktop

but an app on the mobile device). Regardless of the change in environment, the

consumer expects the viewing experience to have a similar enough experience in terms

of functionality that they don’t feel overly inconvenienced by being ‘mobile’

A key goal of this effort is to provide an architecture and API that will support the

expectations of all relevant parties in terms of access to a modern and full-featured viewing

experience. Those expectations include:

 Viewing has become a content-centric social experience: The consumer may be

watching content by themselves or with friends and family in the same room.

Regardless, they will be offered the opportunity to simultaneously engage with cast

members and/or other consumers interested in the same content via a variety of social

networking channels. Possible on-line communities and networks include, but are not

limited to, (in alphabetical order) Facebook, Flickr, Flixster, Google+, Instagram, Orkut,

Pinterest, Sina Weibo, Twitter, or Tumblr. Consumers will be able to post, comment,

friend, follow, vote, enter a contest, or play a game at the same time they are viewing.

 Viewing is a content-centric shopping opportunity: While the consumer is watching a

movie or show, content providers and retailers may wish to provide the opportunity to

purchase related merchandise such as clothes, games, jewelry, posters, music, and

books. The items being displayed may change during playback so as to relate to the

scene currently viewed (e.g., the consumer can purchase and download the song

currently being played in the soundtrack or buy a dress identical to that being worn by an

actress).

 Viewing may be a multi-threaded experience: The consumer may, or may not, pause

the video playback while making use of a social-networking or retail shopping

component. Use of these ancillary components might potentially involve graphic overlays

on the primary screen, the temporary display of a secondary screen, and/or a change to

the size of the primary screen.

 Viewing may be a tailored personalized experience: by using profiles and analytic

data, either gathered by the packages or from some external source, the consumer’s

viewing experience and interactions may be custom tailored. This may range from

relatively simple preference-based selections (e.g., which language is used in text

displays) to more advanced forms of on-the-fly customization such as the display of

available merchandise based on the analysis of past in-package purchases.

A.1.2. Concept of Operations

In identifying the functions and constructs that are within the scope of the Cross-Platform Extras API,

an underlying concept of operation is assumed. This concept assumes a division of responsibility

between a Framework and a Package. The key points are:

 The functions and responsibilities of the Framework are only those that are necessary

and sufficient to enable a package to perform its functions.

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 83

 The Framework is responsible all user-specific (i.e., account) interactions and

functionality, instantiation of a player, and launching a Package. Retailers provide an

environment (a.k.a. the Framework) that allows the consumer to browse the content

available for purchase or rental, add selected content to their private or shared

collection, access (i.e., play) content in their collection, and pause and save the state of

playback, returning to it at a later time and, possibly, on a different device.

 The Package is responsible media selection and control. It is, while in the active state,

responsible for the layout of the user interface any responding to any event related to

either a user action or a condition associated with the hardware environment. When the

consumer selects specific content for playback, the retailer’s framework fires off a

‘package’ that is intended for the presentation and viewing of that specific content (i.e.,

movie, TV show, etc.) in that specific retail framework. The package defines its own UI

(including look-and-feel) and any supplementary content and interactions above and

beyond simply playing the primary content (i.e., the movie). When a package is in the

RUNNING state it has responsibility for, and control of, the user experience.

 Packages developers may, if they choose, implement additional capabilities outside the

scope of this API. In doing so they are free to directly access native API to obtain

additional information or capabilities (e.g., call status on a mobile device). If, however,

developers choose to implement this type of capability, it must be done in a manner that

does not conflict with the state behaviors specified by this API.

The remainder of this document is intended to define an architecture and API that will support the

defined concept of operation where support is needed and not hinder it everywhere else.

A.1.3. Concept of Deployment

A key requirement is that the CPE technologies not impose any limitations on the ability of

any Retailer to provide a distribution channel for any Content Provider. Neither should it impose any

limitations on the nature of the supplementary material a Content Provider chooses to make

available to Consumers.

 The user interface presented to a consumer at any given moment will be a combination of

components and resources provided by both the Retailer and whichever Content Provider has

ownership of the package currently being presented to the Consumer. During any period in which a

package is not being presented, the UI shown will be a Retailer-specific default. All interactions

between a framework and package will comply with the API specified in this document. This does

not, however, preclude or prohibit additional interactions between the software and systems of a

Retailer and that of a Content Provider.

The division of responsibilities between the Retailer and Content Provider in terms of

providing UI components, resources, and behaviors are as follows:

 Retailer / framework:

o overall style, layout, and look-and-feel of the UI prior to content selection or after

the user has terminated an Interactive Experience (i.e., while the framework is in

the non-CPEP state)

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 84

o choice of player

o responding to all user interactions whenever there is no package in the Running

state (e.g., log-in, setting of preferences, account management)

o responding to package requests while an package is in the Running state

o inclusion of any content specific to that Retailer (e.g., a 30 second advertisement

played before the movie)

o ensuring a clean environment upon start-up of an package (i.e., garbage

collection)

 Content Provider / package:

o providing primary content (i.e., a movie or TV show)

o providing all Extras (i.e., secondary content) such as deleted scenes, interviews

with actors, directory’s commentary, etc.

o responding to all user interactions while the package is in the Running state

This behavior is consistent with the state machine specified in Section 4.1.1: Package

Lifecycle. The nature and behavior of the “interactive experience” presented to the consumer will be

determined by the inner state of the package’s Running state. This will, however, be transparent to

the framework.

A.2. Design Principles

The Cross-Platform Extras API has been developed with the goal of supporting the

operational concepts discussed in Section A.1. It is recognized, however, that developers may wish

to extend and enhance the ‘core’ capabilities, that goals and concepts will evolve over time, and

that the capabilities and components provided by the viewing environments will also evolve. The

flexibility, longevity, and extensibility of both the API and any conformant products is, therefore, a

paramount concern.

The remainder of the section identifies the design principals by which the Cross Platforms

Extra API addresses these concerns.

A.2.1. Modular Object Oriented Design

The API is defined in terms of four functional groups (see Section 3.1).The methods and

capabilities within each grouping are defined based on object-oriented design principals. This does

not, however, mandate the use of an object-oriented language (i.e., Java, C++, etc.). Neither is any

restriction or assumption made as to how developers choose to assign functional groups to

components. The only assumption made is that there is a set of one or more software modules that

provide the ‘framework’ functionality and another set of one or more modules that provide the

‘package’ functionality.

Retailer frameworks are to be agnostic and flexible in terms of support of packages. That is,

packages from different content providers may be swapped in and out of the framework at will. To

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 85

ensure this sort of plug-n-play capability the API is based on the use of zero-argument constructors.

See Section 3.3.1 for further details.

A.2.2. Support for Variation in Player Capabilities

The standards and capabilities of media players are of critical importance to this effort. It is

also an area undergoing rapid evolution. Emerging technologies include, but are not limited to,

HTML5, Media Source Extensions (MSE), Encrypted Media Extensions (EME), H.265 and WebM.

Player implementations may vary in the options and capabilities supported or in the manner of

configuring. The CP Extra API is intended to allow operation in a wide range of common viewing

environments. In API accomplishes this goal by abstracting common properties or features, and

support the union of all appropriate features.

The API also groups related features and allows some groups to be optional. That allows

Framework implementers to onboard more quickly and provides some environment flexibility.

A.2.3. Mobile Users

Support for mobile devices is a critical requirement as the use of mobile devices is

increasingly becoming the primary mode of on-line activity. A viewing environment based on a

mobile platform has several characteristics that must be allowed for. First and foremost is that any

application running in a mobile OS must be able to cleanly handle suspension and resumption due

to preemption due to incoming calls. Second is the need to deal with the variable and intermittent

nature of mobile networks. Third is the need to handle events not encountered when operating in a

desktop environment such as a change in screen layout due to reorientation of the device or

warnings of low battery power.

It is the responsibility of whichever component has active control of the user interface to

respond to any of these events. That is to say, that responding to events is the responsibility of the

Package when the package is in an active running state and that at all other times it is the

responsibility of the framework.

 No requirement is imposed that a either type of component be designed to respond or take

into account any of the conditions identified above. It is expected, however, that component

developers, especially those focused on supporting mobile viewing environments, will find it

advantageous to do so. The API provides methods and data structures for obtaining information

regarding the current state of network connectivity (Sections 4.3.1.5 and 4.4.1) and receiving

asynchronous notification of events relating to the device (Section 4.3.3). Component developers

may also choose to access native API in order to obtain additional data. See Section B.2 for further

discussion.

A.3. Guidance for Framework Developers

A.3.1. Functional Decomposition

This API decomposes the functionality into four groups: Package Management, Content

Access, Account Access, and Player Interaction. Framework implementers are responsible for

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 86

providing all four. There is, however, neither requirement nor assumption as to how many software

components are used to implement the functionality. Framework developers may choose to provide

a single construct (e.g., a JavaScript file) or split the functionality across multiple constructs for

purposes of modularity, performance, or flexibility.

A.3.2. Package Management

The Framework has ultimate responsibility for ensuring that the software providing the

Interactive Experience is stable and well-behaved. At the same time, Framework developers have

no guarantee that a deployed Package is entirely bug free or can properly respond to all external

events. The Framework should, therefore, take care to ensure that, as the “last resort” in case of a

fatal error, any allocated resources are released and a final garbage collection and clean-up is

performed.

Framework developers may also API to monitor the state-behavior of a Package and insure

that it is still alive and function. This may be done via the Package Management API group’s

getState() method (see Section 4.3.1.5)

A.4. Guidance for Package Developers

A.4.1. Mobile Users

Any viewing environment based on a mobile platform has several characteristics that must

be allowed for. First and foremost is that any application running in a mobile OS must be able to

cleanly handle suspension and resumption caused by preemption due to an incoming call. Second

is the need to deal with the variable and intermittent nature of mobile networks. Third is the need to

handle events not encountered when operating in a desktop environment such as a change in

screen layout due to reorientation of the device or warnings of low battery power.

Assignment of responsibilities for the correct handling of these situations is outside the

scope of this API. Package developers should, therefore, not assume that the Framework will

insure correct behavior. The roles and responsibilities of each component in this regard should be

identified as part of the integration process. Access to these events is outside the scope of this API

and the mechanism for accessing may depend on the viewing environment (e.g., iOS vs. Android),

the implementation language (e.g., Java vs. JavaScript) or both. See Section B.2: “Mobile

Environments” for additional discussion of these issues.

A.4.2. Single User with Multiple Devices

The use of multiple devices by a single individual is an increasing trend. A user may begin

watching a movie on a tablet device while coming home from work on the train, then finish watching

after dinner on a desktop PC. The ability to pause an activity on one device and seamlessly resume

on another is referred to global session persistence. This has become a characteristic that

consumers expect to find supported. In contrast, local session persistence only allows a user to

resume an activity on the device it was previously initiated on.

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 87

The functions of the Cross Platform API that address session persistence are incorporated

in the Enhancements API Group (see Sections 9.2.2 and 9.2.3). The API, however, does not

differentiate between the global and local forms of session persistence. Support of either form is not

required to be considered in compliance with this specification.

In the event a Retailer maintains session persistence information, the Cross-Platform Extras

API defines methods to allow a package to communicate to the framework those aspects of the

session state it wishes to persist and that when started it may obtain from the framework the data

necessary to (a) determine that a previous session state exists and (b) retrieve and restore the

paused session. Whether or not it may do so on a global or local basis will be determined by the

capabilities the retailer chooses to offer via their framework implementation.

The back-end services and infrastructure used to provide global session persistence are

outside the scope of this API. Each content provider will be free to decide if, and how, a Package

implementation will support this type of functionality. If session persistence is offered to consumers,

either on a global or local basis, package developers may choose to either implement the capability

using whatever functionality the Framework provides via the Enhancements API, or implement an

“organic” capability that is built upon back-end services and infrastructure that are provided by the

content provider. Whether or not a Package uses this in lieu of, or in combination with, its own

persistence mechanism is outside the scope of this API.

A.4.3. History Data

The package history may be used to when the interactive experience is paused so that

when it resume, it continues where it left off. Package history data may include user preferences

specific to the package but it may also include viewing history such as which clips have been

viewed, or the point in a clip at which the user last paused and exited the package.

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 88

ANNEX B. ADAPTATION TO SPECIFIC VIEWING ENVIRONMENTS

 The contents of the section are for informative purposes only and are intended to provide

guidance to developers and to assist in their understanding and use of the normative material.

B.1. HTML5

An HTML5 implementation will use the consumer’s browser as the viewing environment.

The Package will, therefore, be implemented in JavaScript and use CSS and standard HTML5 tags

to create the viewing experience. When implementing a complete CP Extras experience in this type

of environment, developers will have multiple options in terms of where various components reside.

These include:

 “All in Browser” approach: Framework contained in HTML page with the Package. The

CP Extras API is, therefore, implemented via JavaScript calls.

 “Back-End Framework”: Framework resides primarily on server and CP Extras API is

implemented via HTTP and AJAX.

B.1.1. All in Browser

An “All in Browser” approach is one in which the user is provided with web pages that

contains either only the retailer’s Framework (prior to Package selection) or both the Package and

the Framework (after Package selection). The CP Extras API is, therefore, implemented via

JavaScript calls.

This approach, as illustrated above, begins with a Framework-only HTML5 page being loaded into

the browser. Selection of a specific experience by the consumer would result in the Framework

Retailer’s Server

Retailer-specific

components

CPEP library

Retailer’s

Business Logic

CPE API

Browser

player

Provider UI

(e.g., buttons)

Retailer's

JScript

Provider’s

JScript

Retailer’s

UI

Content

Provider

package

framework

Interactions internal

to the Framework

package

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 89

JavaScript using the HTTP protocol to download the appropriate Package, insert it into the HTML

page’s DOM structure, and then invoking the Package’s initialize method (see Section 4.3.1)

B.1.2. Back-End Framework

An “Back-End Framework” approach is one in which the user is provided with web pages

that contains either only the retailer’s Framework (prior to Package selection) or only the Package

and Player (after Package selection). The CP Extras API is, therefore, implemented primarily via

AJAX interactions.

This approach, as illustrated above, begins with a Framework-only HTML5 page being loaded into

the browser. Selection of a specific experience by the consumer would result in the Framework

providing the browser with a web page that contains a media player, possible with a supporting

JavaScript library, along with the selected Package’s JavaScript and DOM structure.

A key aspect of this implementation approach is that it takes advantage of the CP Extra API

groups. Framework functionality supporting the Package Management, Content Access, and other

API groups resides on the server and therefore is accessed via a binding of the API to AJAX. The

one exception is the Player Interaction API group. For performance and flexibility reasons, this

group is supported via a JavaScript library loaded with the web page. Player API interactions are

therefore supported via JavaScript function calls. An HTML onload event may be used to trigger

invoking the Package’s initialize method.

B.2. Mobile Environments

Developers may wish to provide implementations designed specifically for one or more

families of mobile devices. Several approaches may be adopted including use of a cross-platform

Retailer’s Server

Retailer-specific

components

CPEP library

Retailer’s

Business Logic

CPE API

Browser

player

Provider UI

(e.g., buttons)

Player

JScript

Provider’s

JScript

Content

provider

package

framework

package

AJAX

JavaScript

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 90

mobile web-based application framework such as PhoneGap or Titanium, or “going native” and

directly accessing the iOS or Android API.

B.2.1. Mobile Web-Based Frameworks

There are a large number of cross-platform development frameworks and providing

guidance specific to any one of these is outside the scope of this document. A significant number of

these are based on the use of HTML5, CSS, and JavaScript. These are referred to as mobile web-

based frameworks. The primary value-added of these frameworks is access to native APIs unique

to mobile devices (e.g., location services) and integration into the mobile OS environment (e.g.,

application manifests). Due to their usage of HTML5, CSS, and JavaScript, this type of framework

may provide a relatively easy migration path from the pure-browser approach discussed in Section

B.1.

B.2.2. Native APIs

This section addresses the implementation of Cross Platform Experiences using the native

operating environments of a mobile device. The primary challenge that will face a development

team is determining how to implement a Framework that provides the dynamic package launching

capability that is a core aspect of the Cross Platform Experience API. There remainder of this

section examines this issue for two of the most prevalent mobile OS environments. The material

provided is not an exhaustive analysis of the issue. Neither should it be regarded as a normative

component of the API.

B.2.2.1. Android

The API defined in this document may be easily mapped to an Android application. The

Framework may be implemented as a complete application, including the manifest and the main

Activity and, potentially, additional activities, services, and content providers. The Framework side

of all API groups specified in this document would then be defined as interfaces to be implemented

by these components.

A key characteristic of the Cross Platform Extras concept is that Packages may be

dynamically loaded. There are several ways this capability may be provided and the material in this

section is not intended to be a complete listing of all suitable designs.

One option is to deploy the Android application with a manifest and class file that includes

an Android service for each content provider supported by the retailer. This service would be

responsible for (a) implementing all aspects of the Package side of the API and (b) configuring the

layout for a given package. Package-specific layouts would take the form of XML and or JSON files

accessed either from local storage or over the network from the appropriate server. In other words,

a content provider’s Java code may be viewed as a package template that (a) implements all

aspects of this API document and (b) tailor’s it user interface based on the dynamically loaded

package layout file (i.e., the XML/JSON).

Another option would be to dynamically deploy the entire package, including any supporting

background services or fragments. The Dalvik VM provides facilities for an Android application to

perform custom class loading. Instead of loading a Dalvik executable (“dex”) files from the default

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 91

location, an application can load them from alternative locations. This includes the ability to access

and load dex files over the network.

B.2.2.2. iOS

The iOS environment provides limited alternatives for implementing the type of dynamic

package-launching capability envisioned by the Cross Platform Extras concept. Specifically, the

ability to dynamically download Objective-C code and incorporate it into the app at runtime is not

supported. One solution, therefore, is that applications be deployed with both the framework code

and package-specific code for each supported content provider (i.e., studio). Tailoring of the UI and

behavior to a specific film (i.e., package) could be handled via the accessing and loading of XML or

JSON files. In other words, a content provider’s Objective-C code may be viewed as a package

template that (a) implements all aspects of this API document and (b) tailor’s it user interface based

on the dynamically loaded package layout file (i.e., the XML/JSON).

The concept, along with one possible instantiation, is illustrated in the following figure:

The application itself would be downloaded and installed from the Apple App store. In this example,

three content providers are supported by the retailer’s app. At any given time, the retailer’s

Framework will interact with at most one of the provider modules via the CP-Extras API. This will be

determined by which provider is responsible for the Experience selected by the consumer. Note that

the mechanism by which the retailer framework indicates to the package template which specific

package has been selected (e.g., “Big Buck Bunny: the Directors Cut”) would be via the context

parameter used when invoking the package initialization method (see Section 4.3.1).

Content server

Retailer’s Server

Retailer’s

Business Logic

CPE API

iOS app from

App store

Package

layout file

Retailer-specific

components

Provider C code

Provider B code

Provider A code
Provider ‘A’ Server

Package

library

Media

library

content

Cross-Platform Extras

Ref : TR-CPE-API

Version : v1.0

Date: July 15, 2015

Motion Picture Laboratories, Inc. 92

ANNEX C. EXAMPLES

Full examples can be found at http://test.movielabs.com/cpe.

http://test.movielabs.com/cpe

