

CPE App Data
Ref: TR-CPE-APPD
Version: v1.0
Date: July 19, 2016

Motion Picture Laboratories, Inc. i

Cross-Platform Extras
Application Data

CPE App Data
Ref: TR-CPE-APPD
Version: v1.0
Date: July 19, 2016

Motion Picture Laboratories, Inc. ii

CONTENTS

1 Introduction .. 1

1.1 Overview ... 1
1.1.1 Technical Approach ... 1
1.1.2 Extras Architecture .. 1

1.2 Document Organization .. 1

1.3 Document Notation and Conventions ... 1
1.3.1 XML Conventions .. 2
1.3.2 General Notes ... 3

1.4 Normative References .. 4

1.5 Informative References... 5
2 Application Data Model .. 6

2.1 Scope of usage ... 6
2.2 Name-Value Pair .. 6

2.3 Application Model in Manifest ... 7
2.4 Using App Instance Data .. 7

3 Application Data Structure ... 9

3.1 Manifest Data Set ... 9
3.2 Manifest App Data .. 9

3.3 Application Name-Value Data ... 10
3.3.1 Generic Value Types ... 11
3.3.2 Manifest Identifiers .. 12

3.3.3 Special Use Identifiers ... 13

3.4 Application-Specific Data .. 14

3.4.1 Gallery Data .. 14
3.4.2 GIS Data .. 15

3.4.3 Track Selection Data ... 16
3.4.4 Feed Data .. 17
3.4.5 Asset Acquisition Data ... 20

CPE App Data
Ref: TR-CPE-APPD
Version: v1.0
Date: July 19, 2016

Motion Picture Laboratories, Inc. iii

REVISION HISTORY

Version Date Description

1.0 July 19, 2016 Initial version.
Schema was originally published as draft in July. It was
released without changes on December 23, 2016.

CPE App Data
Ref: TR-CPE-APPD
Version: v1.0
Date: July 19, 2016

Motion Picture Laboratories, Inc. 1

1 INTRODUCTION

This document defines application support within Cross-Platform Extras (CPE). It

defines data structures and their intended usage for both CPE-HTML and CPE-Manifest. It

exists independently from those specifications to allow applications to evolve without impacting

the core specs.

In this context, an application (or app) is any behavior that is part of an interactive

experience that is not specifically defined by CPE-Manifest or CPE-HTML. Examples of

applications are mapping, trivia, feeds and scripts. Support for these resides within Media

Manifest, but additional information is required for the best possible support.

This document is part of the CPE family of specifications found at

www.movielabs.com/cpe.

1.1 Overview

1.1.1 Technical Approach

This document builds on Media Manifest Metadata, providing application-specific information.

1.1.2 Extras Architecture

The Extras Menu architecture has the following data objects

 [TBS]

From these components an Extras Menu can be created.

1.2 Document Organization

This document is organized as follows:

1. Introduction—Provides background, scope and conventions

2. Data Model—Defines the data model and intended usage

3. Application Data Structure—Details of XML data structure and appropriate

encoding and interpretation

1.3 Document Notation and Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”,

“SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this

document are to be interpreted as described in [RFC2119]. That is:

http://www.movielabs.com/cpe

CPE App Data
Ref: TR-CPE-APPD
Version: v1.0
Date: July 19, 2016

Motion Picture Laboratories, Inc. 2

 “MUST”, “REQUIRED” or “SHALL”, mean that the definition is an absolute

requirement of the specification.

 “MUST NOT” or “SHALL NOT” means that the definition is an absolute

prohibition of the specification.

 “SHOULD” or “RECOMMENDED” mean that there may be valid reasons to

ignore a particular item, but the full implications must be understood and

carefully weighed before choosing a different course.

 “SHOULD NOT” or “NOT RECOMMENDED” mean that there may be valid

reasons when the particular behavior is acceptable, but the full implications

should be understood and the case carefully weighed before implementing any

behavior described with this label.

 “MAY” or “OPTIONAL” mean the item is truly optional, however a preferred

implementation may be specified for OPTIONAL features to improve

interoperability.

Terms defined to have a specific meaning within this specification will be capitalized,

e.g. “Track”, and should be interpreted with their general meaning if not capitalized.

Normative key words are written in all caps, e.g. “SHALL”

1.3.1 XML Conventions

XML is used extensively in this document to describe data. It does not necessarily imply

that actual data exchanged will be in XML. For example, JSON may be used equivalently.

This document uses tables to define XML structure. These tables may combine multiple

elements and attributes in a single table. Although this does not align with schema structure, it is

much more readable and hence easier to review and to implement.

Although the tables are less exact than XSD, the tables should not conflict with the

schema. Such contradictions should be noted as errors and corrected.

1.3.1.1 Naming Conventions

This section describes naming conventions for Common Metadata XML attributes,

element and other named entities. The conventions are as follows:

 Names use initial caps, as in InitialCaps.

 Elements begin with a capital letter, as in InitialCapitalElement.

 Attributes begin with a lowercase letter, as in initiaLowercaseAttribute.

 XML structures are formatted as Courier New, such as md:rightstoken

 Names of both simple and complex types are followed with “-type”

CPE App Data
Ref: TR-CPE-APPD
Version: v1.0
Date: July 19, 2016

Motion Picture Laboratories, Inc. 3

1.3.1.2 Structure of Element Table

Each section begins with an information introduction. For example, “The Bin Element

describes the unique case information assigned to the notice.”

This is followed by a table with the following structure.

The headings are

 Element—the name of the element.

 Attribute—the name of the attribute

 Definition—a descriptive definition. The definition may define conditions of

usage or other constraints.

 Value—the format of the attribute or element. Value may be an XML type (e.g.,

“string”) or a reference to another element description (e.g., “See Bar Element”).

Annotations for limits or enumerations may be included (e.g.,” int [0..100]” to

indicate an XML xs:int type with an accepted range from 1 to 100 inclusively)

 Card—cardinality of the element. If blank, then it is 1. Other typical values are

0..1 (optional), 1..n and 0..n.

The first row of the table after the header is the element being defined. This is

immediately followed by attributes of this element, if any. Subsequent rows are child elements

and their attributes. All child elements (i.e., those that are direct descendants) are included in the

table. Simple child elements may be fully defined here (e.g., “Title”, “ ”, “Title of work”,

“xs:string”), or described fully elsewhere (“POC”, “ ”, “Person to contact in case there is a problem”,

“md:ContactInfo-type”). In this example, if POC was to be defined by a complex type defined as

md:ContactInfo-type. Attributes immediately follow the containing element.

Accompanying the table is as much normative explanation as appropriate to fully define

the element, and potentially examples for clarity. Examples and other informative descriptive

text may follow. XML examples are included toward the end of the document and the

referenced web sites.

1.3.2 General Notes

All required elements and attributes must be included.

When enumerations are provided in the form ‘enumeration’, the quotation marks (‘’)

should not be included.

The term “Device” refers to an entity playing the interactive material specified here. It

may be a standalone physical device, such as a Blu-ray player, or it might be an application

running on a general purpose computer, a table, phone or as part of another device. The term

‘User’ refers to the person using the Device.

CPE App Data
Ref: TR-CPE-APPD
Version: v1.0
Date: July 19, 2016

Motion Picture Laboratories, Inc. 4

1.4 Normative References

[CM] Common Metadata, www.movielabs.com/md/md

[Manifest] Common Metadata Media Manifest Metadata,

www.movielabs.com/md/manifest

[CPE-Manifest] Cross-Platform Extras, Manifest, www.movielabs.com/cpe/manifest

[CPE-HTML] Cross-Platform Extras, HTML, www.movielabs.com/cpe/html

[CPE-BP] Cross-Platform Extras Best Practices, www.movielabs.com/cpe/practices

[Ratings] Common Ratings Metadata, www.movielabs.com/md/ratings

[RFC4646] Philips, A, et al, RFC 4646, Tags for Identifying Languages, IETF,

September, 2006. http://www.ietf.org/rfc/rfc4646.txt

[RFC4287] IETF RFC 2460, The Atom Syndication Format, December 2005.

http://tools.ietf.org/html/rfc4287

[RFC5023] IETF RFC 5023, The Atom Publishing Protocol, October 2007,

http://tools.ietf.org/html/rfc5023, as modified by Errata 1304 and 3207

[ISO639] ISO 639-2 Registration Authority, Library of Congress.

http://www.loc.gov/standards/iso639-2/

[ISO3166-1] Codes for the representation of names of countries and their subdivisions --

Part 1: Country codes, 2007.

[ISO3166-2] ISO 3166-2:2007Codes for the representation of names of countries and

their subdivisions -- Part 2: Country subdivision code

[ISO4217] Currency shall be encoded using ISO 4217 Alphabetic Code.

http://www.iso.org/iso/currency_codes_list-1

[ISO8601] ISO 8601:2000 Second Edition, Representation of dates and times, second

edition, 2000-12-15.

[TTML] Timed Text Markup Language (TTML) 1.0, W3C Proposed

Recommendation 14 September 2010, http://www.w3.org/TR/ttaf1-dfxp/

http://www.movielabs.com/md/md
http://www.movielabs.com/md/manifest
http://www.movielabs.com/cpe/html
http://www.movielabs.com/cpe/practices
http://www.movielabs.com/md/ratings
http://www.ietf.org/rfc/rfc4646.txt
http://www.loc.gov/standards/iso639-2/
http://www.iso.org/iso/currency_codes_list-1
http://www.w3.org/TR/ttaf1-dfxp/

CPE App Data
Ref: TR-CPE-APPD
Version: v1.0
Date: July 19, 2016

Motion Picture Laboratories, Inc. 5

[KML] Keyhole Markup Language, Version 2.2, Open Goespacial Consortium

(OCG), http://www.opengeospatial.org/standards/kml

[KML-schema] Keyhole Markup Language XML schema, Version 2.2,

http://schemas.opengis.net/kml/

1.5 Informative References

[ManifestBPI] Media Manifest Best Practices for Interactivity,

www.movielabs.com/md/manifest

[AdID] Ad-ID advertisement identifier, www.ad-id.org

http://www.opengeospatial.org/standards/kml
http://schemas.opengis.net/kml/
http://www.movielabs.com/md/manifest
http://www.ad-id.org/

CPE App Data
Ref: TR-CPE-APPD
Version: v1.0
Date: July 19, 2016

Motion Picture Laboratories, Inc. 6

2 APPLICATION DATA MODEL

2.1 Scope of usage

This document defines a format and syntax to be used when providing data to

applications used to support a CPE experience. Application data can be used as part of CPE-

Manifest and CPE-HTML or used independently.

This document defines XML as the exchange format as it well-defined and is more easily

validated than other data languages (e.g., JSON). Prior to the application seeing the data we

expect in many cases the XML will be processed into something more application friendly. Such

processing is, however, outside the scope of this document. Nevertheless, the semantics in this

document apply regardless of what form the data ultimately takes. That said, application-

specific documentation is typically the principle document for authoring and interpreting

application data.

2.2 Name-Value Pair

The data model is a compromise between full flexibility and well-defined objects. The

model is extremely general and fully extensible, but certain commonly used objects are

specifically defined.

The model for flexibility is name-value pairs (AKA key-value, attribute-value, etc.) App

data is expressed as a nonempty set (1 or more) or name value pairs. Some names are included

in a controlled vocabulary, although the spec allows addition non-standard names to be used.

Values fall into one of the (many) types in the schema.

For example, general values could be expressed something like {{“Name”, “Craig”},

{“FavoriteTree”, “Elm”}}. Well-defined values would be something like, {{“Contentid”,

“md:cid:eidr-S:8E01-E746-F1B1-E27A-836C-L”}}.

Types fall into the following categories

 Generic values – string, integer, monetary value, etc.

 Manifest Identifiers – ContentID, ExperienceID, etc.

 Special Use Identifiers – EIDR, Ad-ID, EAN/UPC, etc.

 Application-specific data – Location, Data feed, etc.

Names definitions need to be meaningful in the context of a specific application, so

generally the names are defined as part of an application specification; generally, found in [CPE-

BP].

CPE App Data
Ref: TR-CPE-APPD
Version: v1.0
Date: July 19, 2016

Motion Picture Laboratories, Inc. 7

2.3 Application Model in Manifest

The following diagram illustrates the relationships between application-related objects:

...

Interactive
Interactive

InteractiveTrackReference
InteractiveTrackReference

App Group

App
(environment 1)

Inventory Applications

App
(environment 2)

InteractiveInteractiveTrackReference

App
(environment n)

Compatibility,
TrackID

...

...

Experience

AppGroupID

App Data (instance)
AppID

Extras Data

An Experience references an Application Group comprised of a set of application

implementations that perform equivalent functions. As all apps do the same thing, they should

all understand the same application data. Some app implementations may provide advanced and

optional features lacking in a more basic implementation (e.g., a mapping app that supports

altitude as well as just latitude and longitude). In these cases, all app implementations must have

the same understanding of the subset of the common subset.

The Application Group, documented in [Manifest], Section 7.1, provides the mechanism

to identify and access the same functionality implemented for different platforms. All

applications in the Application Group should offer the same function. Each application in an

Application Group supports a particular platform. For example, all applications in the

Application Group might be mapping application; one for HTML, one for iOS, one for Android,

one for PC, one for Mac, and so forth. This can be more granular if necessary (e.g., iOS 6-8, vs

IOS 9).

The App Group references the Inventory that provides more details about the App,

including where it can be found.

The App Group and Inventory is not necessarily specific to the Experience. For example,

all mapping apps would be in the same App Group. If additional data is needed for the App

Instance (i.e., the application behavior associated with that Experience), App Instance Data can

be referenced by the Experience as @AppID. For example, while the mapping apps are in the

App Group, the location for a map would be in the App Instance Data.

2.4 Using App Instance Data

As noted above, in Section 2.2, applications data is structured as name-value pairs. One

or more name-value pairs can exist per application instance. Also, as previously noted, there

may be more than one application implementation that understand the data (e.g., multiple

CPE App Data
Ref: TR-CPE-APPD
Version: v1.0
Date: July 19, 2016

Motion Picture Laboratories, Inc. 8

mapping applications). This section describes how to connect a specific Experience instance to

the correct application data.

The @AppID attribute is the primary mechanism for identifying the correct data set to

use with a given Experience. Data in Manifest Data’s ManifestAppData applies to a given

instance of an application in the Manifest’s Experience/App when ManifestAppData/@AppID

matches Experience/App/@AppID. All data in ManifestAppData applies to that application,

although some implementations of that application (i.e., specific apps mentioned in an

AppGroup) might use only selected items. The assumption is that application implementations

will select only those names that apply.

For example, assume a Manifest that includes multiple Experience instances (Home,

Work and Play), each referring to a specific location. In this scenario the @AppID in each

Experience/App corresponds with the instance of App Data containing information about that

location.

...

Interactive
Interactive

InteractiveTrackReference
InteractiveTrackReference

App Group

App
(environment 1)

Inventory Applications

App
(environment 2)

InteractiveInteractiveTrackReference

App
(environment n)

Compatibility,
TrackID

...

...

Home

Experience
Instance

AppGroupID

Home App Instance DataAppID

Work Work App Instance DataAppID

Play Play App Instance DataAppID

Note that the AppGroupID is not used when mapping an Experience to the appropriate

App Data. Thus, each ManifestAppData/@AppID value must be unique within the context of a

given ManifestAppDataSet.

CPE App Data
Ref: TR-CPE-APPD
Version: v1.0
Date: July 19, 2016

Motion Picture Laboratories, Inc. 9

3 APPLICATION DATA STRUCTURE

This specification assumes application data comes from the Media Manifest or from the

Manifest Data object defined here. Data can come from other sources, although sources not

defined here are likely to be less interoperable.

3.1 Manifest Data Set

The root object is ManifestAppDataSet that contains one or more instances of

ManifestAppData. In most cases, only one instance of ManifestAppData will be included.

ManifestDataSetID-type is defined as md:id-type.

Element Attribute Definition Value Card.

ManifestAppDataSet-

type

 ManifestDataSetID Unique identifier for this set of

manifest data. This is used for

version control when sending

updates.

manifestdata:ManifestDataSetID-

type

0..1

 updateNum Version. Initial release should

be 1. This is a value assigned

by the metadata originator and

should only be incremented if a

new version of metadata is

released. If absent, 1 is to be

assumed.

xs:positiveInteger 0..1

ManifestID ManifestID of Media Manifest

that depends on this App Data

Set.

md:id-type 0..n

ManifestAppData Instance of a Media Manifest

App Data Set

manifestdata:AppData-type 1..n

3.2 Manifest App Data

Manifest App Data is separately referenceable for purposes of tracking and updating.

Consequently, it contains an identification attribute as well as @updateNum for versioning. It

contains one or more instances of AppData; each instance corresponding with one application

instance.

CPE App Data
Ref: TR-CPE-APPD
Version: v1.0
Date: July 19, 2016

Motion Picture Laboratories, Inc. 10

Element Attribute Definition Value Card.

AppData-type

 AppID ID used to reference data for this

application instance.

Corresponds with

Experience/App/@AppID

md:id-type

 updateNum Version. Initial release should be

1. This is a value assigned by the

metadata originator and should

only be incremented if a new

version of metadata is released.

If absent, 1 is to be assumed.

xs:positiveInteger 0..1

Type Type information for application xs:string 0..1

SubType Subtype information for

application

xs:string 0..n

AppGroupID AppGroupID associated with App

Data (for validity checks)

manifestdata:AppGroupID-

type

0..1

NVPair Name Value Pair instance for

each data objects

manifestdata:AppData-type 1..n

If ManifestAppDataSet/ManifestID is present, then AppID must be unique within all

referenced Manifests. Otherwise, AppID must be globally unique.

3.3 Application Name-Value Data

AppNVPair-type contains various types of data that can be used by applications. Some

elements are useful across various application types, and others are very specific to an individual

application.

Generic objects are defined here. Specific objects are defined in subsequent sections of

this document that are specific to given applications.

Element Attribute Definition Value Card.

AppNVPair-type

 Name Name part of name/value pair.

The child elements in this element

are the value part.

xs:string

CPE App Data
Ref: TR-CPE-APPD
Version: v1.0
Date: July 19, 2016

Motion Picture Laboratories, Inc. 11

Type Data type xs:string 0..1

SubType Data SubType xs:string 0..n

AppGroupID Reference to AppGroup that

understands these data. This is

used for consistency/validity

checks, but is not otherwise

required.

manifest:AppGroupID-type 0..1

The remainder of this object is a one or more instances of a xs:choice referencing elements of various types. That means that

any number of these elements can be included in any order. Use is specific to the intended application. As the unbounded

choice structure does not enforce order, these will be documented out of order.

The last instance is an any##other object allowing any element from another namespace to be included.

3.3.1 Generic Value Types

The following generic types are provided for the value part of the name-value pair.

Element Attribute Definition Value

Part of

AppNVPair-type

Text Any text string xs:string

Integer Any integer xs:integer

Decimal Any decimal number xs:decimal

Duration Time duration xs:duration

URL Any URI or URL xs:anyURI

URLPostfix A portion of a URL intended to be appended to a

specific base URL. Typically, this will include some

combination of path, query or fragment.

xs:string

Language Language xs:language

Time Time xs:time

YearDateTime Year; year and date; or year, date and time, as per

[CM]

md:YearDateOrTime-type

CPE App Data
Ref: TR-CPE-APPD
Version: v1.0
Date: July 19, 2016

Motion Picture Laboratories, Inc. 12

Money Monetary value, optionally including currency, as

per [CM]

md:Money-type

base64Binary Any binary data or data best encoded using

xs:base64Binary

xs:base64Binary

Location Location (real or fictional), as per [Manifest] manifest:EventLocation-

type

Timecode Any timecode manifest:Timecode-type

Person Person, character or group, as per [CM] md:BasicMetadataPeople-

type

TimePeriod Time period, as per [Manifest] manifest:EventPeriod-type

TimedEvent Timed Event as per [Manifest] manifest:TimedEvent-type

3.3.2 Manifest Identifiers

The following types are provided for Media Manifest and generic identifiers.

Element Attribute Definition Value

Part of AppNVPair-

type

ExperienceID Experience ID manifest:ExperienceID-type

PlayableSequenceID Playable Sequence ID manifest:PlayableSequenceID-type

PresentationID Presentation ID manifest:PresentationID-type

ContentID Basic Metadata Content ID md:ContentID-type

PictureID Picture ID manifest:PictureID-type

TextGroupID Text Group ID manifest:TextGroupID-type

ALID Logical Asset ID md:LogicalAssetID-type

EIDR EIDR md:LogicalAssetID-type

OtherID Any other identifier, manifest:OtherID-type

CPE App Data
Ref: TR-CPE-APPD
Version: v1.0
Date: July 19, 2016

Motion Picture Laboratories, Inc. 13

OtherID should be used for identifiers not otherwise included in the schema. OtherID

should not be used when the type of the ID in question is already provided as a distinct element

definition in AppNVPair-type. If the ID corresponds with an identifier defined in Common

Metadata [CM], Table 2-1 the value from the Scheme column should be used in

OtherID/Namespace and the OtherID/Identifier should correspond with the “Expected value for

<SSID>” column.

3.3.3 Special Use Identifiers

The following types are provided for commonly used non-Manifest identifiers. They are

included to facilitate stronger type checking.

Element Attribute Definition Value Card.

Part of AppNVPair-

type

ProductID Reference to a product that is well-

defined in another namespace.

manifest:OtherID-type

AdID Ad-ID as defined in [ADID]. xs:string,

pattern “a-zA-Z1-9][a-

zA-Z0-9]{10}[hHdD]?"

EANUPC Numeric value associated with an

International Article Number (EAN) or

Universal Product Code (UPC)

xs:string

 format How to interpret the digits in the

EANUPC value. See below.

xs:string 0..1

EANUPC/@format should be encoded as follows:

 ‘UPC’ – refers to 12-digit Universal Product Code, also referred to as GTIN-12

 ‘GTIN-13’ – refers to the values in a 13-digit EAN

CPE App Data
Ref: TR-CPE-APPD
Version: v1.0
Date: July 19, 2016

Motion Picture Laboratories, Inc. 14

3.4 Application-Specific Data

Element Attribute Definition Value Card.

Part of AppNVPair-

type

Gallery Additional information to describe a

gallery.

manifestdata:AppData

Gallery-type

LocationSet A location point that describes a

location, or a collection of location

points that defines an area location.

manifestdata:AppData

Location-type

SelectTrack Information about which track a user

can select.

manifestdata:AppData

TrackSelection-type

DataFeedSet Description of data feeds. manifestdata:AppData

Feed-type

TimedEventSequence Timed Events manifest:TimedEventS

equence-type

AcquireAsset Information about how to purchase,

rent or otherwise acquire an asset

associated with the CPE experience.

manifestdata:AppData

AcquireAsset-type

KML Keyhole Markup Language (KML)

[KML]

manifestdata:KMLApp

DataKML-type

any##other Additional objects xs:any ##other

namespace

3.4.1 Gallery Data

Element Attribute Definition Value Card.

AppDataGallery-type

 GalleryID Gallery ID referencing Gallery that

will be displayed.

manifest:GalleryID-type

CPE App Data
Ref: TR-CPE-APPD
Version: v1.0
Date: July 19, 2016

Motion Picture Laboratories, Inc. 15

AutoNextSlideTime Time each Picture dwells on

screen before switching to next

Picture. If ‘0’, images should be

switched manually. If absent,

Device may select its own time, or

choose not to switch images

automatically.

xs:duration 0..1

Loop Should images be displayed in a

loop? That is, should first image

be displayed after last image? If

absent or ‘false’ images are not

looped. If ‘true’ images are looped.

xs:boolean 0..1

3.4.2 GIS Data

3.4.2.1 AppDataLocation-type

The Location/mapping application provides a geographic display. It may be real or

fictional. It may be earthbound or elsewhere.

Element Attribute Definition Value Card.

NodeLocation-type

Location A location. One instance is

included for each location

associated with this context

manifest:EventLocation-type 1..n

 icon Reference to image to be used to

mark this location on the map.

manifest:ImageID-type 0..1

MapImageID An image that can be used as map. manifest:ImageID-type 0..1

If MapImageID is included, the Location should include OtherCoordinates encoded as

follows

 system=’image’

 Coordinate are as follows:

• @label=’x’, and Coordinate value is the offset in number of pixels

horizontally from upper left corner of image.

• @label=’y’, and Coordinate value is the offset in number of pixels

vertically from upper left corner of image.

CPE App Data
Ref: TR-CPE-APPD
Version: v1.0
Date: July 19, 2016

Motion Picture Laboratories, Inc. 16

Note that the inclusion of (x,y) OtherCoordinate instances does not preclude the inclusion

of additional OtherCoordinate instances or an EarthCoordinate instance.

3.4.2.2 AppDataKML-type

This is defined a type to allow a document to be created both with and without validation.

Validation requires editing the schema, although the necessary data are in comments. Depending

on what is commented, the object is defined as one of the two. With schema editing for

maximum validation:

Element Attribute Definition Value Card.

AppDataKML-type

kml KML document as per [KML]. This

form requires schema editing.

kml:kml

and, without schema editing:

Element Attribute Definition Value Card.

AppDataKML-type

kml KML document as per [KML].

Document should still use a

kml:kml object.

xs:any ##other

3.4.3 Track Selection Data

Track selection is the process of selecting the desired video, audio and subtitle tracks for

playback. The track selection model is extended to include timeline ‘tracks’, allowing the user to

select which timeline objects are presented and which are filtered.

Audio, video and subtitle track selection are ‘radio buttons’ in the sense that only one of

each can be selected.

The process for selecting the default video, audio and subtitle tracks is defined in

[Manifest], Annex A. Players should implement this algorithm and present the default track as

the pre-selected option.

CPE App Data
Ref: TR-CPE-APPD
Version: v1.0
Date: July 19, 2016

Motion Picture Laboratories, Inc. 17

Element Attribute Definition Value Card.

AppDataTrackSelection-

type

PresentationID Presentation for TrackID manifest:PresentationID

SelectVideoTrack Are video tracks offered for

selection?

xs:boolean

SelectSubtitileTrack Are subtitle tracks offered for

selection?

xs:boolean

SelectAudioTrack Are audio tracks offered for

selection?

xs:boolean

3.4.4 Feed Data

Data feeds are difficult to handle given that there are so many specialized feeds that

require particular attention. The goal of this model is to provide a simple interface that all

players can implement while still providing any additional information that would be required

for specific feeds. For example, a generic player could capture Twitter text over a simple feed

while a more advanced player could implement the Twitter APIs and provide a full experience.

The Data Feed model defines the source and information needed to obtain the

information. The specification defines one (or possibly more models). It is assumed that a

player will communicate with an intermediary that can convert a proprietary feed to the

standards format. Additional information is provided that allows a player to access a proprietary

feed directly.

A Feed Set consists of one or more sources for the same data. The player should select

the richest feed it is capable of playing. For example, if it has the capability to provide a full

experience using a proprietary feed, it should use that feed over a generic feed.

AppDataDataFeedSet-type is a grouping entity that allows equivalent feeds to be listed.

Element Attribute Definition Value Card.

AppDataFeedSet-type

Generic Generic Feed (i.e., not

proprietary to a given service).

manifestdata:AppDataFeedGeneric-

type

1..n

(choice)

Proprietary Proprietary feed manifestdata:AppDataFeedProprietary-

type

CPE App Data
Ref: TR-CPE-APPD
Version: v1.0
Date: July 19, 2016

Motion Picture Laboratories, Inc. 18

3.4.4.1 Generic Feed

The default feed is a feed defined by this specification. It is based on Atom [RFC4287]

and [5023] (a derivative of RSS).

Atom usage in conformance with the Atom Publishing Protocol as defined in [RFC5023].

Players use the GET form of the Atom Publishing Protocol. POST, PUT and DELETE forms

are be used.

At Atom feed is obtained by performing an HTTP GET to the URL in SourceURL. An

Atom data feed in the form of an atom:feed element constrained as follow:

Element Usage

author Service providing the data; that is, the service providing the ‘default’ feed. The original
service is identified by the feedType.

title Title of feed. This not intended for presentation to the user as only one instance is allowed
and this can therefore not be internationalized.

link Link to this feed

id As appropriate.

updated Date and time when feed was updated

entry One entry for each resource

entry/title Title of resource. As appropriate.

entry/link Link with href attribute referring to resource (see below)

entry/id ID for Resource. As appropriate.

entry/updated Date and time resource was created or updated

Data is obtained by performing an HTTP GET to the value in entry/link element of the

Atom feed for the desired resource.

Data returned may use the following format (other formats can be acceptable)

Element Attribute Definition Value Card.

AtomFeedData-type

FeedImageLocation Location of image for feed (i.e.,

corporation)

xs:anyURI 0..1

FeedImageID Manifest Image ID of image for

entity that posted content.

manifest:imageID-type 0..1

CPE App Data
Ref: TR-CPE-APPD
Version: v1.0
Date: July 19, 2016

Motion Picture Laboratories, Inc. 19

PostingImageLocation Location of image for user posting xs:anyURI 0..1

PostingName Name of user posting xs:string 0..1

WhenPosted When resource was posted. Can

be resolution of year; year and

date; or year, date and time

md:YearDateOrTime-type 0..1

Title Title of post xs:string 0..1

Body Body of post. This can include

links.

xs:string

BodyImageLocation Image associated with post xs:anyURI 0..1

3.4.4.2 Proprietary Feed

A Proprietary Feed is a feed from a proprietary service. There are often SDKs provided

to process data from proprietary feeds.

Element Attribute Definition Value Card.

AppDataFeedProprietary-

type

 category Category of feed (see below) xs:string

 feedType An identifier for the feed source type (see below) xs:string

 feedSubType Any additional informat required to distinguish

between feeds of a given feedType. This could

include versioning information.

xs:string 0..1

SourceURL URL where feed can be obtained xs:anyURI 0..1

QueryObject Information that must be posted to the feed to

obtain the required information.

xs:string 0..1

category and feedType are each encoded using a unique identifying value. The following

values should be used when the mentioned category and feed is used.

 category=‘generic’ – Generic feed as defined in Section 3.4.4.1

o feedType is the same value as it would be under a different category

CPE App Data
Ref: TR-CPE-APPD
Version: v1.0
Date: July 19, 2016

Motion Picture Laboratories, Inc. 20

 category=‘social’

o ‘twitter’

o ‘facebook’

o ‘instagram’

o ‘snapchat’

o ‘vine’

o ‘pinterest’

o ‘googleplus’

o ‘tumblr’

o ‘flikr’

 category= ‘news’

o ‘rotten’ – Rotten Tomatoes

o ‘ew’ – Entertainment Weekly

o ‘nyt’ – New York Times

o ‘time’ – Time Magazine

3.4.5 Asset Acquisition Data

In order to acquire an asset, the information contained in NodeAcquireAsset-type passed

to the retailer’s purchasing function:

Element Attribute Definition Value Card.

AppDataAcquireAsset-

type

ALID Logical Asset ID associated with

title. Corresponds with ALID in

Avails.

md:AssetLogicalID-type

RequestType Type of acquisition request (e.g.,

buy or rent).

xs:string

FormatProfile The media profile associated with

the title. This corresponds with

FormatProfile in [Avails].

xs:string 0..1

CPE App Data
Ref: TR-CPE-APPD
Version: v1.0
Date: July 19, 2016

Motion Picture Laboratories, Inc. 21

PurchaseURL Link to site where content can be

purchased. If there are multiple

purchasing options, multiple

instances can be included.

xs:anyURI 0..n

RequestType is encoded as follows:

 ‘Buy’ – Indicates purchase

 ‘Rent’ – Indicates rental

 ‘Free’ – indicates a free acquisition

 ‘Acquire’ – Indicates an acquisition that does not involve one of the above. This

is used when the Retailer presents the options to the consumer.

